
Differentiable Physically Based Rendering:
Algorithms, Systems and Applications

by Merlin Nimier-David

École Polytechnique Fédérale de Lausanne

Switzerland

October 2022

© 2022 Merlin Nimier-David

Abstract

Physically based rendering methods can create photorealistic images by simulating
the propagation and interaction of light in a virtual scene. Given a scene description in-
cluding the shape of objects, participating media, material properties, etc., the simulation
computes an image representing the radiance reaching the sensor.

This thesis, however, pursues the corresponding inverse problem: given observations
such as pictures of a scene, we want to recover a plausible description of its components.
Unfortunately, the rendering process is typically far too complex to invert analytically.
We therefore turn to iterative gradient-based approximations of the inverse, that require
efficiently estimating gradients of an objective function with respect to the scene param-
eters of interest.

The first part of this thesis is dedicated to algorithms for gradient estimation. We
consider the usage of automatic differentiation and examine the associated tradeoffs.
Next, we introduce radiative backpropagation, an adjoint method that casts the gradi-
ent estimation problem into a modified light transport problem, unlocking vastly more
efficient implementations. For the case of participating media, we propose differential

ratio tracking, a sampling technique that addresses the bias and high variance found in
existing gradient estimators.

In the second part, we focus on the design of systems to support effective differ-
entiable rendering research, including the efficient implementation of the algorithms
above. We describe the architecture and features of Mitsuba 2, an open-source retar-
getable physically based renderer. Mitsuba 2 supports different representations of colors
(RGB, spectral, polarized), computing platforms (scalar, CPU vectorized, GPU), and nu-
merical precision, within a single codebase. Importantly, automatic differentiation can
be applied throughout the system. Then, we extend this design by applying an automatic
conversion from wavefront-style rendering to a megakernel-based approach, leveraging
just-in-time compilation. We obtain a fast, flexible and memory-efficient framework for
primal and differentiable physically based rendering.

Finally, the third part showcases three applications of differentiable physically based
rendering: caustic design, inverse volume rendering, and material & lighting estimation
in real indoor scenes. In all cases, special care is taken to avoid sub-optimal local minima
due to the ambiguous and non-convex nature of the reconstruction problems.

Keywords: physically based rendering, differentiable rendering, inverse rendering, gra-
dient descent, adjoint method, automatic differentiation, participating media, caustics.

i

Acknowledgements

First and foremost, I am immensely grateful to my advisor, Prof. Wenzel Jakob. His
constant availability, guidance, patience, generosity and deep knowledge made this PhD
an unparalleled learning and growth experience. I am thankful that he trusted me and
gave me this unique opportunity.

I am grateful to my thesis committee members Prof. Martin Jaggi, Prof. Tzu-Mao
Li, Prof. Mark Pauly, and Prof. Shuang Zhao for their commitment and insightful com-
ments. Having world-class domain experts review this work was a great privilege.

I would also like to thank my co-authors, who significantly contributed to the re-
search presented in this thesis: Zhao Dong, Anton Kaplanyan, Alexander Keller, Thomas
Müller, Benoît Ruiz, Sébastien Speierer, Delio Vicini, and Tizian Zeltner.

Since the start of my studies, I had the privilege to meet mentors who were instru-
mental in shaping my trajectory. I am grateful for the invaluable advice offered by
Matthieu Bacconnier, Prof. Florent de Dinechin, Alexandru Ichim, Prof. Mark Pauly,
Peyman Milanfar, Anton Kaplanyan, and Alexander Keller.

I was lucky to be surrounded by the talented (past and present) members of the Real-
istic Graphics Lab at EPFL: Miguel Crespo, Guillaume Loubet, Baptiste Nicolet, Pauline
Raffestin, Nicolas Roussel, Sébastien Speierer, Delio Vicini, Mengqi Xia, Tizian Zeltner,
and Ziyi Zhang. They were always there for technical discussions, working through dif-
ficult concepts together, and providing mutual support and memes. Going through the
paper deadlines and the PhD’s ups and downs together made it so much easier.

More broadly, EPFL and my fellow PhD students in the IC department created an
amazing environment in which to learn and grow.

When away on internships, I had the privilege to be hosted by teams full of smart and
kind individuals who made me feel welcome and taught me a lot: the Graphics & Vision
Group at Cornell, the Computational Imaging team at Google Research, the Graphics &
Surreal teams at Facebook Reality Labs, and the Graphics, Communications & Machine
Learning team at NVIDIA.

Over the course of my PhD studies, I had the opportunity to supervise projects driven
by many talented EPFL students. I thank them for their hard work and dedication, in

ii

particular Thomas Ibanez and Damien Martin. It was a pleasure to co-supervise projects
with Bogdan Kulynych.

The research in this thesis was supported by funding from the Swiss National Sci-
ence Foundation (SNSF) and a Facebook Graduate Fellowship. It was also made possible
by numerous free and open-source tools and libraries, including Blender [1], Clang [2],
Homebrew, imageio, Jupyter, LATEX, Markdown, Matplotlib [3], Mosh, NumPy [4], Open-
EXR, pandas [5, 6], Publish or Perish [7], pybind11 [8], pytest [9], Python, SciPy [10],
Seaborn [11], and tqdm. Tizian Zeltner provided the template layout used in this thesis.
I also owe a lot to the many artists who generously make their work available under
permissive licenses.

I feel so lucky to have met Salma, who accompanied me on these (and future) jour-
neys. She helped me keep my sanity, balance and motivation even at times when nothing
was working in my research.

Finally, my parents have given me invaluable support throughout my studies, for
which I am deeply thankful. They taught me the value of studying for myself as op-
posed to working to please someone else. They also enabled me to pursue my passion
for computers, even when that meant playing around with their main working tool or
spending countless hours at my desk.

Figure 1.2 uses the “Bed Classic” scene by jiraniano on BlendSwap.
Figure 2.7 uses the “Bed” model by sadaj72 on BlendSwap.
Tables 3.1, 4.3 and 7.2 use the “The Wooden Staircase” scene by Wig42 on BlendSwap.
Figure 4.1 uses a scene modeled by Olesya Jakob.
Figures 4.1 and 4.5 use a Mars texture made available by Solar System Scope.
Figures 4.7, 7.1 and 10.3 use the “smoke2” model from OpenVDB’s sample models.
Figures 5.1, 5.10 and 10.6 use the “High-Res Smoke Plume” model from JangaFX.
Figures 5.3, 5.8, 10.2 and 10.8 use the “Astronaut - EMU suit” model from jgilhutton on
Blendswap.
Figures 5.5 and 10.1 use the Cloud Data Set from Walt Disney Animation Studios and an
ocean environment map by Antoan Shiyachki.
Figure 7.1 uses scenes (a) and (c) modeled by Tizian Zeltner, scene (b) is “The Grey &

iii

https://blendswap.com/blend/24548
https://blendswap.com/profile/295101
http://blendswap.com/blends/view/92907
https://blendswap.com/profile/6472
https://blendswap.com/blend/14449
https://blendswap.com/profile/130393
https://www.solarsystemscope.com/textures/
https://www.openvdb.org/download/
https://jangafx.com/software/embergen/download/free-vdb-animations/
https://blendswap.com/blend/12622
https://blendswap.com/profile/139325
https://disneyanimation.com/data-sets/?drawer=/resources/clouds/
https://blendswap.com/blend/13552
https://blendswap.com/blend/13552
https://blendswap.com/blend/13552

White Room” by Wig42 on BlendSwap, and scene (d) was modeled by Delio Vicini.
Figure 10.4 uses the “Manned sci fi Rover” model by vajrablue on BlendSwap and the
“Trees” model by Zuendholz on BlendSwap.
Figures 10.6 and 10.8 uses the “Dust Devil (Tornado)” model from JangaFX.
Figure 11.2 uses the “Flashlight (batteries)” model by richanatario on BlendSwap.
Figure 11.4 uses the “Apples for Cycles” model by Alex Telford on BlendSwap.
Figure 11.14 uses scene edits by Matthew Chapman.
Many of the scenes additionally use environment maps from PolyHaven.

iv

https://blendswap.com/blend/13552
https://blendswap.com/blend/13552
https://blendswap.com/blend/13552
https://blendswap.com/blend/13552
https://blendswap.com/profile/130393
https://blendswap.com/blend/28458
https://blendswap.com/profile/5201
https://blendswap.com/blend/3319
https://blendswap.com/blend/3319
https://jangafx.com/software/embergen/download/free-vdb-animations/
https://www.blendswap.com/blend/16036
https://www.blendswap.com/profile/186666
https://blendswap.com/blend/4351
https://blendswap.com/profile/992
https://polyhaven.com/hdris

À Franck, Marie et Olivier.

v

Table of Contents

1 Introduction 1
1.1 Overview . 3
1.2 List of publications . 5

2 Background 6
2.1 Monte Carlo integration . 6

2.1.1 Example problem . 6
2.1.2 Estimator . 7
2.1.3 Importance sampling . 7
2.1.4 Bias and variance . 8
2.1.5 Russian roulette . 10
2.1.6 Multiple importance sampling . 10
2.1.7 Pseudo- and quasi-random numbers 11

2.2 Physically based rendering . 12
2.2.1 Setting and scope . 13
2.2.2 Rendering equations for the surface case 15
2.2.3 Participating media . 16
2.2.4 Rendering algorithms . 17

2.3 Automatic differentiation . 21
2.4 Adjoint methods . 23
2.5 Compilers and domain-specific languages 24
2.6 Differentiable rendering . 26

2.6.1 Problem statement . 26
2.6.2 Neutron transport . 26
2.6.3 Differentiable rasterization . 27
2.6.4 Physically based differentiable rendering 28
2.6.5 Differentiable rendering and machine learning 31
2.6.6 Applications of differentiable rendering 31

I Algorithms 33

3 Differentiable rendering with automatic differentiation 37
3.1 Algorithm . 37

vi

Table of Contents

3.2 Correctness . 38
3.3 Memory usage . 40
3.4 Selective usage of AD . 41

4 Radiative Backpropagation 44
4.1 Introduction . 44
4.2 Radiative transfer . 44
4.3 Method . 46

4.3.1 Differential radiative transfer . 46
4.3.2 Optimization using differential transport 47
4.3.3 Adjoint radiance . 49
4.3.4 Operator formulation . 50
4.3.5 Volumetric transport . 51
4.3.6 Sampling strategies for differential rendering 53
4.3.7 Radiative backpropagation path tracing 54
4.3.8 Worse is better? Acceleration using biased gradients. 56

4.4 Evaluation . 58
4.4.1 Validation . 58
4.4.2 Performance . 58
4.4.3 Texture optimization . 60
4.4.4 Volume optimization . 61

4.5 Conclusion . 65

5 Unbiased Inverse Volume Rendering with Differential Trackers 67
5.1 Introduction . 67
5.2 Background . 70

5.2.1 Volumetric path tracing . 70
5.2.2 Path replay backpropagation . 71

5.3 Issues with free-flight based gradient estimation 72
5.3.1 Differentiating the radiative transfer equation 73
5.3.2 Free-flight based gradient estimators 74

5.4 Differential ratio tracking . 77
5.4.1 Unbiased estimators . 77
5.4.2 Sampling proportionally to transmittance 78
5.4.3 Differential ratio tracking . 83
5.4.4 Multiple importance sampling . 87

vii

Table of Contents

5.4.5 Preserving linear time complexity 87
5.5 Evaluation . 88

5.5.1 Correctness and variance . 88
5.5.2 Role of the optimizer . 92
5.5.3 Implementation and performance 92

5.6 Conclusion . 95

II Systems 96

6 Systems for physically based differentiable rendering 97
6.1 Scale of rendering systems . 97
6.2 Differentiating through renderers . 98

7 Mitsuba 2 100
7.1 Introduction . 100
7.2 Background . 101

7.2.1 Template metaprogramming . 101
7.2.2 Expression templates . 103
7.2.3 The Enoki library . 103

7.3 System design . 110
7.3.1 Architecture . 110
7.3.2 Language bindings . 114
7.3.3 Feature set . 115
7.3.4 Challenges . 116

7.4 Evaluation . 117
7.5 Conclusion . 117

8 From wavefront to megakernel 121
8.1 Wavefront rendering in Mitsuba 2 . 122
8.2 Megakernel translation . 123

8.2.1 Wavefronts and megakernels . 123
8.2.2 Transitioning to a megakernel . 124

8.3 Performance evaluation . 126
8.4 Conclusion . 129

viii

Table of Contents

III Applications 131

9 Caustic optimization 133
9.1 Surface displacements . 133
9.2 Gradient-index optics . 137
9.3 Conclusion . 139

10 Inverse volume rendering 140
10.1 Combating local minima . 140

10.1.1 Source of local minima . 141
10.1.2 Emissive volume initialization . 142
10.1.3 Inverse volume rendering . 143

10.2 Conclusion . 151

11 Inverse Rendering of Real Rooms 152
11.1 Introduction . 152
11.2 Related work . 154
11.3 Method . 156

11.3.1 Input data . 156
11.3.2 Inductive bias & modeling assumptions 159
11.3.3 Texture-space sampling for variance reduction 162
11.3.4 Optimization details . 163

11.4 Results . 166
11.4.1 Reconstruction of real captured scenes 166
11.4.2 Implementation . 166
11.4.3 Applications . 168

11.5 Conclusion . 169

12 Conclusion 174

A InverseVolumeRenderingwith theNull-Scattering Integral Formulation178

B Inverse Rendering of Real Rooms — additional results 181
B.1 Comparison to prior work . 181
B.2 Ablation study . 181

References 185

ix

List of Figures

1.1 Characterization of our work . 2
1.2 Inverse rendering diagram . 3
1.3 Topics overview . 4

2.1 Example of consistent and unbiased estimators 9
2.2 Monte Carlo integration example . 12
2.3 Examples of real-world light transport effects 13
2.4 Typical scene components . 18
2.5 Handling discontinuities in rasterization 28
2.6 Discontinuities in path tracing . 29
2.7 Inverse rendering setup overview . 35

3.1 Effect of correlation on gradient correctness 39
3.2 AD misses gradients at discontinuities 40
3.3 Correctness of Russian roulette gradients (detached pdf) 41
3.4 Example AD graph built by Mitsuba 2 . 43

4.1 Texture optimization, Globe scene . 45
4.2 Radiative backpropagation pipeline diagram 48
4.3 Validation of radiative backpropagation gradients 59
4.4 Radiative backpropagation runtime breakdown 60
4.5 Radiative backpropagation application: texture optimization 62
4.6 Radiative backpropagation application: 3D printing 63
4.7 Radiative backpropagation application: volume optimization 64

5.1 Unbiased inverse volume rendering with differential trackers 68
5.2 Unbiased inverse volume rendering with differential trackers 69
5.3 Differential ratio tracking results preview 72
5.4 Delta tracking for the adjoint problem (diagram) 73
5.5 Bias of free-flight based sampling methods 75
5.6 Transmittance estimators and the corresponding differential trackers . . 79
5.7 Differential delta and ratio tracking (diagram) 81
5.8 Differential ratio tracking gradients validation 89
5.9 Validation of differential ratio tracking against analytic gradients 91

x

List of Figures

5.10 Differential ratio tracking ablation study 93

7.1 Example applications of Mitsuba 2 . 100
7.2 Volume gradient image computed with Mitsuba 2 107
7.3 Mitsuba 2 architecture diagram . 111
7.4 Mitsuba 2 data structure instantiation . 113
7.5 Code generation example: importance sampling of GGX 114

8.1 Automatic conversion of wavefront-style programs to a megakernel . . . 121
8.2 Recording Mitsuba 2 plugins for megakernel conversion 125
8.3 Relative runtime of megakernel-style radiative backpropagation com-

pared to Mitsuba 2 . 128

9.1 Experimental setup for caustic design experiments (diagram) 133
9.2 Caustic optimization results . 136
9.3 Example gradient-index lenses . 137

10.1 Inverse volume rendering of clouds . 140
10.2 Volume reconstruction with our novel initialization scheme 141
10.3 Presence of local minima in volume optimization 142
10.4 Differential ratio tracking optimization results (solid objects) 146
10.5 Differential ratio tracking optimization re-rendering loss (solid objects) . 147
10.6 Differential ratio tracking optimization results (volumes) 148
10.7 Differential ratio tracking optimization re-rendering loss (volumes) . . . 149
10.8 Differential ratio tracking relighting results 150

11.1 Inverse rendering of real rooms . 152
11.2 Limitations of simplified solutions for scene reconstruction 153
11.3 Scene reconstruction pipeline diagram 157
11.4 Importance of accounting for global illumination in inverse renderings . 158
11.5 Example frames from the Replica dataset captures 159
11.6 Local minima in unconstrained inverse rendering (emission) 160
11.7 Local minima in unconstrained inverse rendering (roughness) 161
11.8 Uneven observation frequency in handheld video dataset 163
11.9 Texture-space sampling scheme . 164
11.10 Re-rendering results (side-by-side) . 167
11.11 Texture-space visualization of the recovered albedo textures 168
11.12 Rendering from novel viewpoints . 170

xi

11.13 Rendering from novel viewpoints (continued) 171
11.14 Relighting and scene editing results . 172
11.15 Relighting a reconstructed indoor scene 172
11.16 Limitations of scene reconstruction . 173

B.1 Reconstruction results, comparison to previous method 182
B.2 Inverse rendering ablation study (quantitative) 183
B.3 Inverse rendering ablation study (qualitative) 183

List of Listings

1 Path tracing pseudocode . 19
2 Radiative backpropagation pseudocode (loop over samples) 55
3 Radiative backpropagation pseudocode (per sample handling) 55
4 Weighted reservoir sampling pseudocode 84
5 Differential ratio tracking pseudocode . 85
6 Differential residual ratio tracking pseudocode 86
7 Automatic differentiation with Enoki . 107
8 Mitsuba 2’s SurfaceInteraction data structure 112
9 Example usage of Mitsuba 2’s features through the Python bindings . . . 115
10 Excerpt from the implementation of Mitsuba 2’s diffuse BSDF plugin . . 118
11 Automatic kernel extraction pseudocode 126
12 Kernel extraction with automatic differentiation 127
13 Enoki-based Eikonal equation solver with a “leapfrog” discretization . . . 138

xii

1 | Introduction

Two main types of rendering algorithms, that generate images from a user-provided de-
scription of the scene to be shown, are in widespread use.

Rasterization focuses on realtime performance and has long benefited from hardware
support in GPUs. Its approach of rendering an image into individual pixel contributions
makes it difficult to achieve physical realism, and can involve taking many shortcuts.
Rasterization is used in video games, realtime visualizations, virtual reality, and has
recently started making its way in movie production—at least in previsualization and
virtual production scenarios.

On the other hand, physically based rendering prioritizes the accuracy of the results.
A very different set of techniques is employed to account for phenomena such as inter-
reflections (light bleed), rough reflections, caustics, participating media and subsurface
scattering, e.g. in human skin or food. These effects are realized through a simulation of
the way light is emitted from light sources, travels through space, interacts with various
objects in the scene, reaches an observer (camera) and finally, is recorded by a sensor.
This simulation involves solving high-dimensional integrals, typically usingMonte Carlo

methods and appearance models that account for the interaction of light and matter.
Thanks to decades of research in this field, great progress has been achieved in the

accuracy of the models, the amount of detail the images capture, and how efficiently
they are computed. Realism has been a major driving force since the inception of the
field of computer graphics. The fact that each step of the simulation is a relatively good
approximation of the corresponding real-life phenomenon allows not only the creation
of hyper-realistic images, but also broader industrial and scientific applications.

In this thesis however, we focus on the inverse problem: given an image, can we re-
cover the state of the scene that lead to the formation of this image? Consider the task
of determining the material or shape of an object from a set of images, illustrated in Fig-
ure 1.2. This is a surprisingly difficult problem, since the pixel values encode a complex
superposition of indirect effects: for instance, a part of the object could appear brighter
because a neighboring object reflects light towards it, or it could appear darker because
another object casts a shadow. To solve this task, it is therefore not enough to focus on
the object of interest alone–we need to understand its relationship to the surrounding
environment as well. Correctly capturing this type of coupling is exactly what enables
the kind of photorealistic rendering described above. Unfortunately, physically based

1

Chapter 1. Introduction

Pr
im

al

Rasterization Physically based

A
dj

oi
nt

Continuous

Discontinuous
Edge sampling,

reparametrizations

Our work

Path tracing,
cinema VFX,

rendering research,
…

DirectX, OpenGL,
game engines,

previsualization,
…

OpenDR,
So� rasterizer,

Nvdi�rast,
…

Figure 1.1: Our work focuses on differentiable physically based rendering in order to accurately account

for all aspects of light transport. While the algorithms proposed in this thesis do not account for gradients

that arise due to visibility-related discontinuities, they can be extended to such cases [12].

rendering algorithms tend to be complex and fairly expensive–hours of rendering time
for a single image are not uncommon.

We interpret a rendering algorithm as a function 𝑓 : X → Y, whose input en-
codes the shape and materials of objects. Evaluating y = 𝑓 (x) yields a rendered image
through the physical simulation of light transport. But the effects mentioned above, such
as shadowing, specular interreflection, or subsurface scattering, obscure the individual
properties of objects. Hence an inverse 𝑓 −1(y) to recover scene parameters x from an
image y is normally not available.

Instead, we focus on the efficient computation of gradients with respect to scene
parameters. In other words, we will estimate the derivatives 𝜕y/𝜕x relating inputs and
outputs of the simulation. Combined with a first-order optimization algorithm, we will
then able to navigate the parameter space to find solutions to different types of inverse
problems.

However, this is not a panacea: optimization objectives can be highly non-convex,
and the observations used as reference often contain unavoidable ambiguities. For exam-
ple, does an object appear to have a specific color and brightness because of the quality
of the lighting, or the properties of its own surface? In practical applications, we will
then have to pay significant attention to initial guesses and regularization to obtain sat-
isfactory results.

We believe this pursuit to be highly pertinent, as many scientific applications rely
on different kinds of optical measurements or image observations. Being able to reliably

2

Chapter 1. Introduction

Primal rendering

Inverse rendering

Scene parameters Rendering

Figure 1.2: Inverse rendering is the process of recovering the scene’s properties from image observa-

tions. Since the rendering process is generally too complicated for any closed-form solution, we turn to

gradient-based optimization. The work in this thesis does not rely on neural networks or other machine

learning methods, but directly optimizes the parameter of physically based models. Scene: “Bed Classic”

by jiraniano on BlendSwap.

invert the image formation process opens the door to solving challenging inverse prob-
lems ranging from relightable scene reconstruction to cloud tomography, non-light of
sight imaging, computational lens design and 3D printing. This thesis contributes to this
objective on three axes: physically based differentiable rendering algorithms, systems to
efficiently realize those algorithms, and real-world applications leveraging them.

1.1 Overview

The topics covered in this thesis are summarized in Figure 1.3. We start by reviewing
the relevant concepts and related work in Chapter 2.

Algorithms. In Part I, we discuss three methods to compute gradients with respect to
scene parameters through physically based rendering. We first consider a method based
on automatic differentiation, and find it to be limited by memory consumption. We
then introduce radiative backpropagation and differential ratio tracking, two algorithms
for unbiased and efficient differentiable rendering. The latter is dedicated to volumetric
rendering and addresses bias and variance issues in existing methods.

3

https://blendswap.com/blend/24548
https://blendswap.com/profile/295101

Chapter 1. Introduction

Algorithms Systems Applications

Automatic Di�erentiation

Radiative Backpropagation Megakernel translation

Mitsuba 2

Inverse volume rendering

Material and lighting
estimation from photos

Caustic design

Di�erential Ratio Tracking

co-design support

Figure 1.3: This thesis covers contributions in the field of differentiable physically based rendering over

three areas: algorithms, systems and applications.

Systems. Part II focuses on systems built for effective implementation and execution
of differentiable rendering algorithms. We discuss the combination of constraints and
challenges unique to physically based rendering. After reviewing the Enoki library [13],
we present the architecture of Mitsuba 2, an open source retargetable renderer. It sup-
ports multiple computational backends (scalar CPU, SIMD on the CPU, GPU) and color
modes (RGB, spectral, polarized). Importantly, it also supports automatic differentia-
tion through the entire system. We then extend it with an automatic conversion to
megakernel-style rendering for time- and memory-efficient implementation of the ra-
diative backpropagation algorithm of Chapter 4.

Applications. Part III showcases three applications built from our algorithms and sys-
tems. Using Mitsuba 2’s autodiff support, we optimize the heightfield of a slab of glass
until it focuses light passing through into a desired caustic. Similarly, we optimize the
spatially-varying index of refraction of a glass cube to project two separate caustic im-
ages. Next, we perform inverse volume rendering, recovering the density and albedo
of high-resolution heterogeneous media from images. In the third applications, we si-
multaneously recover the lighting and material properties of real indoor scenes from
pictures.

Finally, we review this thesis’ contributions and turn to future research directions in
Chapter 12. We believe differentiable rendering will prove to be a key tool in a wide
range of applications, from computer vision and inverse rendering to broader scientific
applications such as optics and climate science.

4

Chapter 1. Introduction

1.2 List of publications

The majority of this thesis is freely adapted from the following four published articles:

Chapters 7 and 9:
[14] Mitsuba 2: A Retargetable Forward and Inverse Renderer
Merlin Nimier-David, Delio Vicini, Tizian Zeltner, Wenzel Jakob
ACM Trans. Graph. (Proc. SIGGRAPH Asia), Vol. 38, No. 6, pp 203:1–203:17, Nov. 2019.
https://rgl.epfl.ch/publications/NimierDavidVicini2019Mitsuba2

Chapters 4 and 8:
[15] Radiative Backpropagation: An Adjoint Method for Lightning-Fast Differ-
entiable Rendering
Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, Wenzel Jakob
ACM Trans. Graph. (Proc. SIGGRAPH), Vol. 39, No. 146, pp 146:1–146:15, Jul. 2020.
https://rgl.epfl.ch/publications/NimierDavid2020Radiative

Chapter 11:
[16]Material andLightingReconstruction forComplex Indoor SceneswithTexture-
space Differentiable Rendering
Merlin Nimier-David, Zhao Dong, Wenzel Jakob, Anton Kaplanyan
Eurographics Symposium on Rendering (DL-only Track), 2021.
https://rgl.epfl.ch/publications/NimierDavid2021Material

Chapters 5 and 10:
[17] Unbiased Inverse Volume Rendering with Differential Trackers
Merlin Nimier-David, Thomas Müller, Alexander Keller, Wenzel Jakob
ACM Trans. Graph. (Proc. SIGGRAPH), Vol. 41, No. 44, pp 44:1–44:20, Jul. 2022.
https://rgl.epfl.ch/publications/NimierDavid2022Unbiased

5

https://rgl.epfl.ch/publications/NimierDavidVicini2019Mitsuba2
https://rgl.epfl.ch/publications/NimierDavid2020Radiative
https://rgl.epfl.ch/publications/NimierDavid2021Material
https://rgl.epfl.ch/publications/NimierDavid2022Unbiased

2 | Background

Physically based rendering (Section 2.2), and furthermore differentiable physically based
rendering (Section 2.6) heavily rely on the numerical estimation of complex recursive
integrals. We start by reviewing Monte Carlo integration, a crucial tool used to perform
this estimation. We then turn to an introduction of physically based rendering, before
reviewing automatic differentiation and other topics relevant to our work. Finally, we
give an introduction to differentiable rendering in Section 2.6.

2.1 Monte Carlo integration

Unfortunately, the high-dimensional integrals describing light transport, which will be
described in Section 2.2.2, are far too complex to compute analytically. Furthermore, de-
terministic integration methods such as quadratures will typically fall short as well, since
their computational requirements typically grow exponentially with the dimensionality
of the domain—which is known as the curse of dimensionality. Section 2.2 will discuss
how this dimensionality quickly grows with the accuracy of the transport simulation.

Instead, Monte Carlo methods take a randomized approach: they draw samples from
an (almost arbitrary) distribution, evaluate the integrand, and aggregate the sample’s
contributions. Under reasonable assumptions on the sampling distribution, this leads
to an unbiased estimator that computes the solution of the integral in expectation, i.e.
as the number of samples tends to infinity. A key advantage is that samples can be
drawn with a cost linear with respect to the dimensionality of the domain. Furthermore,
the independence of the samples makes Monte Carlo integration trivially parallelizable,
which is crucial for the effective usage of modern hardware. In exchange, one has to
accept variance, or noise, in the estimated result. Better sampling distributions, or simply
more samples, can be used to lower the variance to an acceptable level.

2.1.1 Example problem

In the rest of this section, we will take the following toy problem as a guiding example.
Over a bounded 2D domain D, estimate the integral:

𝑆 =
∫
D
𝑓 (x) dx, (2.1)

6

Chapter 2. Background

where 𝑓 is a black-box binary function. It can be interpreted as computing the area of
an unknown shape, visualized in Figure 2.2 (right), given a function testing whether a
point is contained within the shape.

Let x be a random variable x ∼ 𝑝 (x), with 𝑝 its probability distribution function (pdf).
In the simplest cases, this will be a simple uniform distribution over the domain D. The
cumulative distribution function (CDF) of 𝑝 is, by definition:

𝑃 (𝑦) = P(𝑥 ≤ 𝑦) =
∫ 𝑦

−∞
𝑝 (𝑥) d𝑥 . (2.2)

2.1.2 Estimator

Monte Carlo integration transforms an integration problem into a stochastic sampling
problem, i.e. how to best select 𝑝 (x) such that:

E𝑝 [x] = 𝑆, (2.3)

while keeping the variance of the estimate as low as possible. The Monte Carlo estimator
of 𝑆 is given by:

⟨𝑆⟩ = 1
𝑁

𝑁∑︁
𝑖=1

𝑓 (x𝑖)
𝑝 (x𝑖) , (2.4)

where 𝑁 is the sample count and x𝑖 is the individual samples drawn independently from
pdf . In our area estimation example, we can start with a simple uniform sampling strat-
egy over the domain [−1, 1]2, of area 4. All points are therefore sampled from the con-
stant pdf 𝑝 (x) = 1/4, which produces the following easy-to-implement estimator:

⟨𝑆⟩ = 1
4𝑁

𝑁∑︁
𝑖=1

𝑓 (x𝑖), (2.5)

The simplicity of this approach is a strength of Monte Carlo methods. This particular
case, with 𝑓 (x) ∈ {0, 1}, is akin to rejection sampling or “dart throwing”, which can be
extremely inefficient. Real applications, as we will see below in the case of rendering,
involve continuously-valued integrands with multiple factors, as well as sophisticated
sampling techniques.

2.1.3 Importance sampling

There is flexibility with regard to the choice of sampling distribution 𝑝 (x). The only
constraint is that it allocates a nonzero probability of sampling x for all values where

7

Chapter 2. Background

the integrand is nonzero:

𝑓 (x) ≠ 0 =⇒ 𝑝 (x) > 0. (2.6)

With importance sampling, 𝑝 is set to be as close as possible to the integrand (up to a
constant normalization factor). In fact, if it were possible to generate samples exactly
proportionally to the integrand, the variance could be brought down to zero:

𝑝 (x) ∝ 𝑓 (x) (2.7)

=⇒ ⟨𝑆⟩ = 1
𝑁

𝑁∑︁
𝑖=1

𝑓 (x𝑖)
𝑓 (x𝑖)/𝐶 , (2.8)

= 𝐶, (2.9)

where 𝐶 is the normalization constant of the pdf:

𝐶 =
∫
D
𝑝 (x) dx =

∫
D
𝑓 (x) dx = 𝑆, (2.10)

which, of course, implies that Monte Carlo estimation is not needed if 𝐶 is already
known.

For most practical applications, this kind of perfect importance sampling will not be
achievable for the entire integrand, but only certain subsets of its constituting factors.
A crucial part of graphics research involves designing problem-specific sampling distri-
butions to efficiently estimate integrals. Many sampling techniques have been proposed
for standard rendering, but we will see they’re highly relevant in the adjoint problem of
gradient estimation as well [12, 15, 17].

2.1.4 Bias and variance

Estimators, as defined above, are computed by aggregating individual samples. In this
thesis, we strive to build estimators that are: unbiased, consistent, and have low variance.

Variance. Variance quantifies the dispersion of estimators’ values around their aver-
age. High variance values should be expected when one cannot design a sampling den-
sity that matches the integrand well enough for good importance sampling. In all prac-
tical applications, some amount of variance is to be expected. However, well-designed
estimators will be able to minimize it. The consequence is that fewer samples will be
needed to achieve the desired level of precision, bringing down the overall computa-
tional cost of the integration.

8

Chapter 2. Background

22 24 26 28 210

Sample count =

3.2

3.4

3.6

3.8

Va
lu

e

�=

22 24 26 28 210

Estimator count<

3.2

3.4

3.6

3.8

�̄4 =
∑<
8=1 �4

Consistent but biased
Consistent and unbiased
Ground truth

Figure 2.1: Left: consistent Monte Carlo estimators 𝐸𝑛 using 𝑛 random samples converge to the correct

value as 𝑛 increases. Regardless of its consistency, a biased estimator may be systematically over- or

under- estimating the desired value (red dots). Right: taking averages of𝑚 biased estimators 𝐸𝑛 for any

finite 𝑛 does not converge to the correct value (red dots, shown here with 𝑛 = 4). On the other hand, a

consistent and unbiased estimator converges as either 𝑛 or𝑚 increase (blue dots).

While the asymptotic convergence rate of a Monte Carlo estimator remains𝑂 (1/√𝑁)
[18], lowering the variance will improve the constant factor. The asymptotic rate itself
can be improved by using quasi-random samples, see Section 2.1.7.

Consistency. An estimator is said to be consistent if, as the number of samples in-
creases, the value of the estimator converges in expectation to the desired value. For
example,

𝐸𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 + 1
𝑛
, (2.11)

where 𝑥𝑖 are independent identically distributed random variables. 𝐸𝑛 is consistent since

lim
𝑛→∞𝐸𝑛 = E[𝑥] . (2.12)

However, it is biased because for any finite value 𝑛,

E[𝐸𝑛] = E[𝑥] + 1
𝑛
≠ E[𝑥] . (2.13)

Having unbiasedness and consistency implies that both estimators computed with
large sample counts and averages of many instances of the estimators with a fixed sample
count converge to the desired value. This is illustrated in Figure 2.1. In this example,
the consistent-but-biased estimator approaches the desired value from above: the error
distribution is not centered around zero.

9

Chapter 2. Background

Bias-variance tradeoff. For some applications, it may be too expensive or complex to
build a correct, unbiased estimator. Likewise, there are cases where unbiasedness comes
at the cost of significant additional variance. In those cases, a slightly biased, but lower
variance estimator may actually achieve better overall convergence and therefore prove
more practical.

2.1.5 Russian roulette

Consider an estimator for the following infinite sum:

𝐺 =
∞∑︁
𝑖=0

𝑔(x𝑖). (2.14)

Infinite sums regularly appear in the context of physically-based rendering, where a light
transport simulation should account for contributions of light sources after any number
of interactions with the scene (Section 2.2.2). Of course, it is not possible to account for
infinitely many terms, and the solution generally cannot be computed in closed form
either.

Russian roulette (RR) can be employed to truncate the infinite sum while preserving
an unbiased estimate of its complete value. Russian roulette truncates the sum after
computing a random number of terms 𝑘 , where the termination probability 1 − pdf (𝑘)
can be chosen arbitrarily as long as∀𝑘 ≥ 0, pdf (𝑘) > 0. When the sum is not terminated
at term 𝑘 , all of the subsequent terms are weighted by𝑤 = 1/pdf (𝑘) to compensate for the
eventual truncation. We denote 𝑝𝑖 the probability of the sum reaching term 𝑖 and not
being terminated at 𝑖 . Then,

E[𝐺] = 𝑝0

[
𝑔(x0)
𝑝0

+ 𝑝1
𝑔(x1)
𝑝0 𝑝1

+ (1 − 𝑝1) · 0 + · · ·
]
+ (1 − 𝑝0) · 0 (2.15)

= E[𝐺] . (2.16)

In rendering, this technique is applied to turn infinitely recursive sampling processes
into finite estimators without introducing bias.

2.1.6 Multiple importance sampling

As mentioned above, our integrals of interest will not admit perfect importance sampling
schemes. In the rendering context, integrals will often consist of multiple terms that
can be sampled individually but not jointly. In this situation, the collection of individual
sampling techniques can be combined using multiple importance sampling (MIS) instead.

10

Chapter 2. Background

Essentially all state-of-the-art rendering techniques rely on MIS to achieve acceptable
variance levels.

Suppose that techniques A and B produce samples x𝐴 and x𝐵 respectively. In order to
benefit from the strength of both distributions, the key is to weigh the contributions of
each sample by accounting for the probability of producing that sample using the other
technique. Several ways to compute MIS weights have been proposed, with one of the
most common choices being the balance heuristic [19]:

𝑤 (x𝐴) =
pdf𝐴 (x𝐴)

pdf𝐴 (x𝐴) + pdf𝐵 (x𝐵)
, (2.17)

and vice-versa for sample x𝐵’s weight. This can be generalized to more than two esti-
mators and adapted to the characteristics of the problem, e.g. how well the individual
estimators fit the integrands.

Later, Kondapaneni et al. [20] showed that this heuristic is not as optimal as it was
once thought, and proposed new weighting functions that provably minimize the vari-
ance of the combined estimator—sometimes using negative weights.

2.1.7 Pseudo- and quasi-random numbers

Sampling strategies employed in Monte Carlo estimators often consume samples 𝜉 uni-
formly distributed on the unit interval, and remap or warp them to the desired distri-
bution 𝑝 (x). This transformation can be performed in various ways, from closed-form
CDF inversion to hierarchical sample warping and rejection sampling.

We do not assume access to a true random number generator: high-quality pseudo-
random numbers are sufficient for our purpose. In fact, the fully deterministic nature
of PRNGs is precisely what allows replaying specific sequences of sampling decisions at
will. This is a prerequisite of the path replay backpropagation algorithm of Vicini et al.
[21], which we use in Chapter 5.

When running highly parallel simulations with hundreds of thousands of program
instances drawing random numbers in parallel, it is important to ensure that the different
instances are uncorrelated. Even algorithms that explicitly support large numbers of
parallel streams, such as PCG [22], must be carefully seeded to avoid this issue.

Interestingly, the use of uniformly distributed pseudo-random variates as input to
those transformations is not the optimal strategy: so-called quasi Monte Carlo (QMC)
methods use carefully designed point sets that better cover the space by minimizing
clumping. QMC and other stratification techniques [23] can in theory improve the con-
vergence rate from 𝑂 (1/√𝑁) to 𝑂

(
log(𝑁)𝑘/𝑁)

[18]. In practice, however, the assumption

11

Chapter 2. Background

Uniform Strati�ed

Sobol Halton101 103 105

Sample count =

10−5

10−4

10−3

10−2

10−1

100

A
bs

ol
ut

e
re

la
tiv

e
er

ro
r

1/√=
log(=)/=
Uniform
Strati�ed
Sobol
Halton

Figure 2.2: Estimating the area of the cross (red) with rejection sampling. Using the same Monte Carlo

estimator with stratified random numbers, rather than purely uniform ones, converges faster to the de-

sired value.

of a finite rate of variation of the integrand is not respected in the context of render-
ing. Still, an improvement of approximately 30% in the convergence rate is commonly
observed. We illustrate the usage of quasi-random sequences for the simple rejection
sampling-based problem of Equation (2.5) in Figure 2.2.

2.2 Physically based rendering

Physically based rendering (PBR) is concerned with producing images that faithfully rep-
resent the world by capturing, as accurately as possible, the physical processes involved
in light transport. Many of the effects observed in our daily lives, such as the ones illus-
trated in Figure 2.3, require this kind of accurate simulation. Our goal is to learn about
the real world from image-based observations: it makes intuitive sense that one would
gain more useful information from differentiating and inverting a physically based ren-
dering process rather than rasterization. This thesis therefore focuses exclusively on
physically based methods.

As we will see, geometric light transport can be expressed as a Fredholm integral
equation of the second kind, which can then be estimated with Monte Carlo integration.
This section only introduces the background relevant to the work presented in this the-

12

Chapter 2. Background

(a)(a) (c)(c) (e)(e)

(b)(b) (d)(d) (f)(f)

Figure 2.3: Physically based rendering attempts to faithfully simulate how light interacts with the world.

This includes (a)macro-level spatially varying surface reflectance properties, (b) reflective and refractive
caustics, (c-d) internal scattering and absorptionwithin participatingmedia, (e-f)micron-scale structures

leading to wave effects, as well as other characteristics such as polarization. We will differentiate the

rendering process in the presence of (a-d), and leave advanced effects (e-f) to future work.

sis. For a complete treatment, please see the reference textbook of Pharr et al. [24] as
well as the thesis of Veach [25].

2.2.1 Setting and scope

Since we must eventually be able to invert the light transport simulation, we will have to
restrict its scope and accuracy to the phenomena that are relevant to the type of scenes
and objects that we would like to analyze. In most cases, the algorithms used can be
adapted or generalized on a per-application basis to support the relevant effects. For
example, we will not attempt to model wave effects and diffraction because they have a
limited impact on the applications pursued in this thesis.

Scenemodel. We will simulate light transport involving geometric optics. The scenes
will be made up of the following components, following the well-established abstractions
of PBRT [24] and popular rendering frameworks [26]:

• Emitters produce light by emitting radiance into the scene (e.g. the sun or the
filament of a lightbulb). They are characterized by their position, intensity and

13

Chapter 2. Background

angular profile.

• Participatingmedia model regions where microscopic particles can absorb, scat-
ter and emit light (see Section 2.2.3).

• Shapes define the specific position and orientation of the surface boundaries of
objects. Common representations include triangle meshes, analytic shapes, and
signed distance functions.

• Surface characteristics, such as their roughness and color, are captured by the
bidirectional reflectance function (BSDF), which will be introduced in Section 2.2.2.

• Sensors receive and record incident radiance hitting their surface. The most com-
mon sensors used are modeled after cameras, but they can represent any kind of
light-based measurement device.

Light properties. Light is an electromagnetic radiation characterized by its wave-
length, which is perceived as its color. Correct handling of color in rendering involves
representing surface, emitter and sensor properties such as their reflectance, intensity
and sensitivity as a function of the wavelength. Moreover, one must consistently use
input and output color spaces and image storage formats that can represent a large
enough set of colors (gamut). Methods have been proposed to smoothly upsample RGB
reflectance data to spectral distributions [27, 28, 29].

Beyond its wavelength, light is also characterized by its polarization state, which is
the direction of the electric field. Light’s polarization can be affected by interactions
with surfaces, which provides additional clues about the observed objects’ materials and
surface geometry.

Spectral and polarization properties are important for the accurate simulation of light
[30, 31]. Accurate measurements could help reduce the many degrees of freedom of our
challenging and underconstrained reconstruction problems [32, 33]. However, it also
places additional requirements on the acquisition setup, and takes it out of the reach of
casual users (e.g. consumer cameras do not output a full spectral distribution or the po-
larization state of light). Therefore, our experiments will be limited to unpolarized light
simulated in an RGB color basis. Nevertheless, the algorithms presented are agnostic
to the color representation and incorporating these aspects is an important avenue for
future work.

14

Chapter 2. Background

2.2.2 Rendering equations for the surface case

We now describe the fundamental equations underpinning light transport, following the
exposition of Veach [25, Section 3.7].

The measurement equation. In general terms, physically based rendering outputs
measurements of scalar-valued radiometric quantities 𝐼1, . . . , 𝐼𝑀—for example, the indi-
vidual pixels of an 𝑀-pixel image. The measurement equation [25] describes the role of
the sensor in forming those measurements:

𝐼 =
∫
M×S2

𝑊𝑒 (x,𝝎) 𝐿𝑖 (x,𝝎) d𝐴(x) dΩ⊥
x (𝝎), (2.18)

where M is the sensor surface, S2 is the space of directions on the unit sphere,𝑊𝑒 is the
sensors’ responsivity at position x and incident direction 𝝎, 𝐿𝑖 is the incident radiance1,
d𝐴 is the area measure on the sensor’s surface, and dΩ⊥

x is the projected solid angle
measure at x. The projected measure induces a foreshortening factor |cos𝜃𝑖 |, where 𝜃𝑖 is
the angle between the incident direction and the surface normal.

The light transport equation. Next, the light transport equation [34] describes the
relationship between the incident radiance 𝐿𝑖 at any point x and incident direction 𝝎,
and the emitted and in-scattered radiance. It can be derived from the radiative transfer

equation and the principle of conservation of power [35].
Here, we use the angular form following Veach [25, Equation (3.19)], but equivalent

surface and operator forms exist (Chapter 4 will rely on the latter). We assume that the
radiance distribution in the scene has reached its steady state—though time-resolved
rendering has important applications for inverse reconstructions such as non-line-of-
sight imaging [36]. Furthermore, we assume for the moment that the scene does not
contain participating media. Light therefore travels in a straight line:

𝐿𝑖 (x,𝝎) = 𝐿𝑜 (r(x,𝝎),−𝝎), (2.19)

where r is the ray casting function, which returns the closest intersection point to the
ray with origin x and direction 𝝎. The exitant radiance 𝐿𝑜 is computed as

𝐿𝑜 (x,𝝎𝑜) = 𝐿𝑒 (x,𝝎𝑜) +
∫
S2

𝑓𝑠 (x,𝝎𝑖,𝝎𝑜) 𝐿𝑜 (r(x,𝝎𝑖),−𝝎𝑖) dΩ⊥
x (𝝎𝑖), (2.20)

1For more details on the radiometric quantities and units involved, see PBRT [24, Chapter 5].

15

Chapter 2. Background

where 𝐿𝑒 is the radiance emitted at the current position x towards the direction of ob-
servation 𝝎𝑜 . The integral, taken over the sphere of directions S2, computes radiance
reaching point x from all directions 𝝎𝑖 and reflected in direction 𝝎𝑜 . Finally, 𝑓 is the bidi-
rectional scattering function (BSDF), which models the proportion of radiance reflected
or transmitted by the current surface from 𝝎𝑖 to 𝝎𝑜 .

Note that Equation (2.20) is self-referential: 𝐿𝑜 appears on both the left- and right-
hand sides, which lends itself to recursive computational algorithms. We will rely on
Monte Carlo integration to estimate it efficiently despite its potentially infinite dimen-
sional integration domain.

2.2.3 Participating media

The surface case of the rendering equation described above has been generalized to ac-
count for the effect of microscopic absorbing, scattering, and emissive particles encoun-
tered along light paths. Examples of participating media include clouds, fire, smoke,
foods, milk and human skin (Figure 2.3).

Mediumproperties andnotation. We consider a heterogeneous medium with small,
spherical, independently distributed, scattering and absorbing particles. Such a medium
is described for all positions x by its spatially varying absorption 𝜎𝑎 (x) and scattering

coefficients 𝜎𝑠 (x) which are proportional to the density of particles along a ray (units
of m−1). The extinction coefficient 𝜎𝑡 := 𝜎𝑎 + 𝜎𝑠 is defined as the sum of absorption and
scattering.

In practice, it can be useful to parametrize media by 𝜽 := (𝜎𝑡 , 𝛼), where the scat-

tering albedo 𝛼 := 𝜎𝑠/𝜎𝑡 captures the probability of scattering (as opposed to absorption)
at an interaction with the medium. When referring to a position x𝑡 = x0 + 𝑡 · 𝝎 along
a ray (x0, 𝝎), we will use 𝑡 and x𝑡 interchangeably to avoid cluttering formulae. The
transmittance along the ray models the proportion of light traveling between points 𝑎
and 𝑏 without being absorbed. It is defined as

T(𝑎, 𝑏) := exp
(
−

∫ 𝑏

𝑎
𝜎𝑡 (𝑠) d𝑠

)
, (2.21)

where 𝜎𝑡 (𝑠) ≡ 𝜎𝑡 (x0 + 𝑠 · 𝝎). We use the shorthand T(𝑡) ≡ T(0, 𝑡) ≡ T(x0, x𝑡).

Volume rendering equation. Volumetric light transport is governed by the volume
rendering equation [35, 37, 38], an integrodifferential equation modeling the absorbed,
emitted, in-scattered and out-scattered radiance. We use the pure integral form of the

16

Chapter 2. Background

volume rendering equation in the following, as it lends itself better to estimation with
Monte Carlo methods.

𝐿𝑜 (x,𝝎𝑜) =
∫ 𝑡𝑠

0
T(𝑡) [

𝜎𝑎 (𝑡) 𝐿𝑒 (𝑡) + 𝜎𝑠 (𝑡) 𝐿𝑠 (𝑡,𝝎𝑜)
]

d𝑡

+ T(𝑡𝑠)
[
𝐿𝑒 (𝑡𝑠) + 𝐿𝑠 (𝑡𝑠,𝝎𝑜)

]
, (2.22)

where 𝐿𝑖 (x,𝝎) is the radiance in direction 𝝎 at position x and 𝐿𝑒 denotes emission from
the medium, a surface, or from the environment. 𝑡𝑠 corresponds to the distance along
the ray to the closest surface or medium boundary. 𝐿𝑠 is the in-scattered radiance on
volumes or surfaces:

𝐿𝑠 (x,𝝎𝑜) B
∫
𝑆2

𝐿𝑜 (x,𝝎𝑖) 𝑓𝑠 (x,𝝎𝑜 ,𝝎𝑖) d𝝎𝑖 , (2.23)

where 𝑓𝑠 denotes either the phase function or the bidirectional scattering distribution
function (BSDF) depending on whether x lies on a surface or in a medium.

Extensions. Further generalizations of Equation (2.22) have been proposed to capture
a broader class of participating media. For instance, the shape of the individual parti-
cles composing the medium may have varied profiles, introducing anisotropic behavior.
This was first studied in other fields [39, 40, 41], with micro-flake theory [42] being pro-
posed in graphics to capture this effect. Moreover, the spatial distribution of the particles
may not be uniform but correlated, leading to a theory and algorithms dedicated to the
simulation of non-exponential media [43, 44, 45, 46].

2.2.4 Rendering algorithms

Physically based rendering relies on dedicated Monte Carlo integration algorithms to es-
timate the high-dimensional Fredholm integral equations (2.20) (surface case) and (2.22)
(volume case).

Dimensionality The path integral measurement equation of Veach [25] gives a better
understanding of the problem’s dimensionality:

𝐼 𝑗 =
∫
Ω
𝑓 𝑗 (𝑥) d𝜇 (𝑥) , (2.24)

where Ω is the set of all transport paths of all lengths, 𝑥 is a path in Ω, and 𝑓 𝑗 is the
measurement contribution function. The dimensionality of the integration domain Ω is
infinite.

17

Chapter 2. Background

Emi�er
Emi�er

SensorSensor

Light paths
Light paths

Figure 2.4: The path tracing algorithm simulates the travel of light rays through a scene in reverse using

geometric optics. Paths start from the camera (left) and travel in a straight line until they hit the closest

surface. A new direction is sampled according to the surface properties (center) and the path throughput

is updated to account for the surface’s color and reflectance. When a light source is encountered (right),

the emitted radiance is added to the result. When rays eventually escape the scene bounds, they are

terminated and their contribution is added to the image.

Deterministic numerical integration algorithms such as quadratures are therefore
not viable due to the curse of dimensionality: the amount of computation needed grows
exponentially with the dimensionality of the integration domain. On the other hand,
Monte Carlo methods for rendering enjoy linear time complexity with respect to the
number of interactions along light paths, which makes it a particularly appropriate tool.
Techniques such as Russian roulette (Section 2.1.5) are employed to ensure that the sim-
ulation completes in finite time.

Path tracing. Within the framework of Monte Carlo integration, the efficiency of the
estimators will largely depend on the quality of the distributions used for importance
sampling (Section 2.1.3). In other words, one must strive to sample the integration vari-
ables of Equation (2.20), such as𝝎𝑖 , using a distribution matching the integrand as closely
as possible.

The path tracing algorithm iteratively constructs light paths, where each path seg-
ment corresponds to one level of recursion in the light transport equation. Its simplest
form is visualized in Figure 2.4. Light paths are built in reverse compared to light’s true
direction of travel: they start from the sensor rather than light sources. This reversal
is possible due to the reciprocity of the physical equations, a property we will leverage
as well in Chapter 4. Sampling efficiency is increased in many cases, as samples are

18

Chapter 2. Background

guaranteed to reach the sensor.
The algorithm starts by sampling a position x on the sensor’s surface and direction

𝝎 leaving the sensor (Equation (2.18)). In the case of an idealized pinhole camera, 𝝎
is uniquely determined by x, while a more realistic camera model will sample 𝝎 based
on the aperture size. Then, the path contribution is initialized to zero and a recursive
incident radiance estimation is performed. The corresponding pseudocode is given in
Listing 1.

def path_trace(scene, sensor):

Sample an initial direction leaving the sensor

ray = sensor.sample()

𝐿 = 0 # Path radiance

𝛽 = 1 # Path throughput

while True:

Terminate infinite sum with Russian roulette

q = russian_roulette(throughput)

if random() < (1 - q):

break

𝛽 /= q

Find the closest surface interaction in the direction of the ray

si = scene.intersect(ray)

Account for emission at that point and in our direction

𝐿 += 𝛽 * si.emitter().eval(ray)

Importance sample the next ray from the surface's BSDF

ray, weight = si.bsdf().sample(ray)

Among other things, this sampling weight accounts for the surface color

𝛽 *= weight

Finished, return accumulated radiance

return 𝐿

Listing 1: Simplified pseudocode for the path tracing algorithm without next-event estimation.

Next-event estimation. Next-event estimation (NEE) improves sample efficiency by
additionally attempting a direct connection to light sources at each interaction [47].
Sampling a direction toward a light source proportionally to its contribution is an in-
teresting problem in itself, especially in scenes containing many light sources or with

19

Chapter 2. Background

heavy occlusion. The contribution from NEE is combined with the main path’s contri-
bution using multiple importance sampling (MIS, Section 2.1.6).

Volumetric path tracing. Path tracing has been extended to account for participating
media [48], which can absorb or scatter light over entire regions of space rather than at
discrete surfaces. Once entering a medium’s boundary, volumetric path tracing repeat-
edly samples free-flight distances based on the density of the medium. They correspond
to the distance traveled by a light ray within the medium before interacting with one
of the medium’s particles and being scattered. The scattering direction is sampled from
the phase function, which is a generalization of the BSDF for the volume case. Between
scattering events, the throughput of the path is reduced by the medium’s absorption.
When next-event estimation is used, one must take care to account for the attenuation
along the direct emitter connection.

Extensions. A wealth of research is dedicated to improving the algorithms above,
whether to improve their efficiency or account for more advanced phenomena. For ex-
ample,

• Particle tracing, also called light tracing, simulates paths starting from light sources
rather than the sensor. It is can perform better than path tracing in certain situa-
tions, such as the caustic design scenario of Chapter 9.

• Bidirectional path tracing [49] simulates paths starting from both sensors and light
sources, and then explicitly connecting them.

• Photon mapping [50, 51] and virtual point light [52] methods are typically biased,
but can significantly reduce variance in cases where the above methods may not
be able to create connections to either emitters or sensors.

• Manifold exploration [53] and manifold next-event estimation [54, 55] can handle
paths containing series of specular interactions, that are hard or impossible to
sample with existing methods. Such paths occur for example in human eyes.

• Time-resolve or transient path tracing [56] can produce images integrated over
extremely short time periods, accounting for the time of travel of photons. Longer
light paths therefore only contribute to the later time slices.

20

Chapter 2. Background

Chapter 4 shows that estimating scene parameter gradients can be recast as an inte-
gration problem, for which we use an algorithm similar to (volumetric) path tracing. Fi-
nally, we examine the volumetric case in more detail in Chapter 5 and propose a sampling
strategy dedicated to the estimation of gradients with respect to the medium properties.

2.3 Automatic differentiation

Our goal is to compute scene parameter gradients through the rendering process in order
to invert it. While it is certainly possible to manually derive and implement the derivative
computation for each function involved [57], this is tedious, error-prone, and leads to
implementations that are hard to extend. Automatic differentiation (AD) systems track
the differential relationship between variables in a program. Given the complexity of
physically based rendering algorithms and the number of components involved, AD is
an enticing solution to the challenges with manual differentiation mentioned above.

Chapters 3 and 7 discuss the algorithmic and systems implications of applying AD
to differentiable physically based rendering. The fundamentals are introduced here, but
we refer the reader to the reference book of Griewank and Walther [58] for a more thor-
ough treatment. Forward and reverse mode differentiation are two ways to transform a
computation (the primal) into programs that evaluate corresponding derivatives. Note
that this distinction is relevant whether the transformation is carried out automatically
or manually. In the following, we briefly contrast forward- and reverse-mode differen-
tiation of a simple example function

𝑓 (𝑥0, 𝑥1, 𝑥2) B 𝑥0 · 𝑥1 + 𝑥2. (2.25)

We denote J𝑓 the Jacobian matrix

J𝑓 B



𝜕𝑓1
𝜕𝑥1

· · · 𝜕𝑓1
𝜕𝑥𝑛

...
. . .

...
𝜕𝑓𝑚
𝜕𝑥1

· · · 𝜕𝑓𝑚
𝜕𝑥𝑛


, (2.26)

where𝑛 and𝑚 are the dimensionalities of the function’s inputs and outputs respectively.

Forward-mode. Forward-mode propagates derivatives from inputs to outputs by re-
peated application of the chain rule. Below, it propagates a perturbation 𝛿𝑥0 along edges,
resulting in the partial derivative 𝜕𝑓/𝜕𝑥0 = 𝑥1. More generally, it can evaluate arbitrary
directional derivatives J𝑓 𝜹x using a single pass. However, separate derivatives with

21

Chapter 2. Background

respect to individual inputs require multiple passes and are therefore costly, making
forward-mode inadequate for most of our applications of interest. Nevertheless, it is
comparatively simpler to implement and remains a useful tool to visualize or validate
the effect of individual inputs on the output.

x0

yx1 +

x2

× δx0·x1

δx0·x1

δx0

0

0

Reverse-mode. Also called backpropagation, reverse-mode differentiation evaluates
the chain rule in reverse, from outputs to inputs, and is ideal for optimization of functions
with one output and many inputs. Below, it computes grad 𝑓 (x) = (𝑥1, 𝑥0, 1).

x0

yx1 +

x2

×

Phase 1 (primal)

x0

yx1 +

x2

×

Phase 2 (adjoint)

δy·x1

δy

δy
δy

δy·x0

When 𝑓 is multi-valued, reverse-mode can evaluate arbitrary directional derivatives
J𝑇𝑓 𝜹y with respect to perturbations of the outputs 𝜹y in a single pass. The program
execution order must be reversed during the propagation of derivatives. When reverse-
mode derivation is performed automatically, this is generally accomplished by recording
a transcript of operations (also known Wengert tape [59] or computation graph) during
the primal phase that is replayed in a subsequent adjoint phase. As part of this process,
each primal variable is associated with a corresponding adjoint variable (e.g. 𝛿𝑥0 = 𝛿𝑦 ·𝑥1)
that tracks its sensitivity with regard to perturbations of the output. Because we are
interested in optimizing parameters of scenes including potentially large textures, re-
sulting in millions of input parameters, we focus exclusively on reverse-mode AD in the
following.

Usage of AD. Backpropagation [60] is a key ingredient of deep learning. In recent
years, libraries such as TensorFlow [61], PyTorch [62] and Jax [63] powered the devel-
opment of deep learning and significantly lowered the barriers to entry. These libraries
offer a high-level interface manipulating tensor and neural network primitives, while
gradient computation is transparently handled by an AD backend. Undoubtedly, the

22

Chapter 2. Background

ease of use and flexibility afforded by AD contributed to the fast pace of research in
this field.

Unfortunately, these systems are designed and optimized for relatively structured
and regular computational workloads, with high arithmetic intensity operations such
as matrix-matrix multiplication and convolutions. Neural networks, as well as their
gradient computations, typically decompose into such operations, for which hardware
vendors have developed highly-tuned kernels. Machine learning libraries, then, must
combine these kernels in the right order to realize the higher-level operations specified
by the user—as well as their adjoints.

The physically based rendering algorithms, however, inherently come with a higher
degree of dynamism: scenes loaded at runtime may contain any combination of compo-
nents (shapes, BSDFs, emitters, etc), each with their specific code. Furthermore, global
illumination implies that light paths may encounter any combination of scene elements
in any order, adding to the irregularity of the workload. These operations cannot be
realized with a simple combination of the aforementioned optimized kernels. This im-
poses heavy design constraints on systems tackling this problem, which are discussed
in Chapter 6.

Runtime cost. Maintenance and traversal of the reverse-mode transcript add con-
siderable additional runtime cost, which can be amortized by differentiating multiple
coherent evaluations of 𝑓 at the same time—Griewank and Walther [58] refer to this as
vector mode.

For long-running computations, the memory requirements of reverse-mode differ-
entiation are prohibitive. Checkpointing strategies [64] reduce storage overheads by
discarding information that can be recovered later on by repeating parts of the compu-
tation, but this introduces considerable additional complexity. Furthermore, the size of
the checkpoints themselves can be problematic in vector-mode differentiable renderers,
which normally propagate large wavefronts consisting of many millions of rays.

Chapters 3 and 7 investigate the usage of AD for differentiable physically based ren-
dering, including the associated tradeoffs.

2.4 Adjoint methods

In some cases, there exists a third alternative to either manual analytic gradient deriva-
tion or automatic differentiation: the adjoint sensitivity method. It has been applied to

23

Chapter 2. Background

optimal control [65, 66], fluid simulation [67], retargeting the motion to elastic robots
while minimizing vibrations [68], and to reduce the cost of training neural residual net-
works [69] in the area of machine learning. The tutorial of Bradley [70] provides a good
introduction to the topic.

Commonly used in time-dependent partial differential equations (PDEs), the adjoint
method enables efficiently estimating gradients with respect to the input parameters
(e.g. the system’s initialization) by simulating an adjoint equation backward in time. In
such cases, once the adjoint equation has been derived for the target problem, the re-
verse simulation typically has time and memory complexities comparable to the forward
simulation.

In Chapter 4, we propose a differentiable rendering algorithm resembling the adjoint
method in that it also creates an adjoint problem that can be sampled in reverse. How-
ever, the specifics of the two approaches are different because the steady state of light
transport lacks a natural time variable that we would simulate in reverse. Replacing
the bulk of the transcript by an adjoint transport algorithm makes it possible to apply
AD symbolically and only where needed, during a pre-processing step. The transcript
is no longer required, drastically reducing memory usage. A system implementing this
approach is presented in Chapter 8.

2.5 Compilers and domain-specific languages

Compilers. Compilers are programs that transform (generally higher-level) source
code to another (generally lower-level) representation. Compilers are often split into
frontends that transform source language code to an intermediate representation (IR), and
backends that transform the IR into platform-specific binaries or instructions. A num-
ber of optimizations passes are applied at each representation level in order to produce
an efficient program, while maintaining the high-level constraints of the programming
model (e.g. correctness of arithmetic operations and memory integrity). LLVM [2] is a
highly successful compiler toolchain that follows this architecture.

The ISPC compiler [71], also based on LLVM, transforms source code written in a
slightly modified version of the C programming language into efficient vectorized ma-
chine code. In this context, vectorization refers to the use of single instruction / multiple

data (SIMD) instructions, which perform the same operation on 2, 4, or 8 operands at
once. It has been used successfully in high-performance computing and graphics appli-
cations.

24

Chapter 2. Background

Just-in-time compilation. Just-in-time (JIT) compilers perform the same task, but at
runtime rather than in an offline pre-processing phase. Additional optimization oppor-
tunities thus become available: for example, in rendering, the contents of the scene to
render are known. This information makes it possible to compile only the required com-
ponents of the system, and e.g. combine or fuse them. Or, in other contexts, the input
data and statistics on the most used parts of the program (hot paths) can be leveraged to
apply further optimizations. On the other hand, the execution time of JIT compilation
must be tightly controlled as it takes place at runtime.

DSLs for graphics. Finally, domain-specific languages are languages whose features
and syntax are designed with a specific target domain in mind, as opposed to general
languages such as C. DSLs can be embedded in another, more general language, tak-
ing the form of a library with potential overloading of the host languages’ syntax and
operators.

A number of domain-specific languages (DSLs) have been proposed to accelerate
the development of efficient numerical algorithms in the area of computer graphics.
Halide [72] facilitates the design of highly optimized image processing pipelines, de-
coupling the computation from the way it is carried out to expose optimization oppor-
tunities. The approach can be combined with reverse-mode AD to create new neural
network layers or solve inverse problems [73].

Anderson et al. [74] recently proposed Aether, a DSL for Monte Carlo rendering
which symbolically differentiates sampling code to determine associated probability den-
sities that are crucial for many rendering techniques. Rodent is a related system by
Pérard-Gayot et al. [75], which builds on AnyDSL [76] to generate a vectorized imple-
mentation for rendering a specific input scene, while applying partial evaluation to com-
bine and specialize the individual components of a renderer.

For inverse rendering, Yang et al. [77] propose a language and compiler that extends
automatic differentiation to both continuous and discontinuous functions. Their method
outputs TensorFlow, PyTorch, Halide or GLSL programs and is evaluated on procedural
shaders. Bangaru et al. [78] likewise introduce a language dedicated to the evaluation
of derivatives at parametric discontinuities. Integration and the Diract delta are both
introduced as language primitives for explicit handling. The resulting system, Teg, is
evaluated on various inverse tasks from procedural shader parameter optimization to
trajectory optimization in a minigolf physics simulation with contacts.

Our work on Mitsuba 2 (Chapter 7) is related to Rodent, but targets a wider set
of transformations including changes to the formulation of light transport (e.g. polar-

25

Chapter 2. Background

ization) and problem statement (e.g. inverse rendering via differentiation) but does not
specifically focus on partial evaluation—although combining both approaches is likely
feasible. Mitsuba 2 and Mitsuba 3 [79] are built onto Enoki [13] and Dr.Jit [80] respec-
tively, which can be seen as embedded DSLs and include an optimizing JIT compiler.
The latter also allows targeting different execution models and platforms, such as GPUs
or vectorized CPU instructions, at runtime.

2.6 Differentiable rendering

We now introduce the main topic of this thesis: differentiable rendering. Fundamentally,
we are concerned with the inversion of the physically based rendering problem of Sec-
tion 2.2. Although research in inverse graphics dates back several decades, great strides
have been taken over the last few years. While this thesis is focused on the graphics
approach to the problem, highly related inverse problems have been studied in neutron
transport and computer vision. We discuss some of these efforts below.

2.6.1 Problem statement

Inverse rendering seeks to invert the rendering process to infer the properties of the
object or phenomenon that was observed. This inversion could be carried out in different
ways, but the physically based rendering process is generally far too complex to admit
closed-form solutions. Instead, we turn to iterative gradient-based methods.

Differentiable rendering, then, is concerned with the computation of the required
parameter gradients. This thesis presents algorithms and systems dedicated to their
efficient and correct estimation.

Note that while differentiable rendering is of course highly useful for inversion prob-
lems, local gradients can also be leveraged in other ways, such as improving the effi-
ciency of forward rendering [55, 81, 82].

2.6.2 Neutron transport

The earliest related work involving derivatives of Monte Carlo simulation can be traced
back to the field of neutron transport [83, 84]. Indeed, simulations used in the design of
nuclear reactors involve much of the same theory and algorithms, as light transport.

Monte Carlo perturbation analysis methods were developed to study the effect of small
parameter changes in nuclear reactors on e.g. reaction rates. Rief et al. [83] classify them

26

Chapter 2. Background

in three categories: correlated tracking, derivative operator sampling, and use of impor-

tance. In all cases, the main goal is to estimate the difference in outcome between two
configurations, despite the variance of each simulation’s outcome. Several variance re-
duction schemes commonly deployed in rendering today, such as Russian roulette and
splitting, were already in use. Correlated tracking forces the modified configuration to
use the same sampling decisions as the base configuration, but re-evaluates the sam-
pling weights. On the other hand, derivative operator sampling estimates the value
of the difference using a Taylor expansion, which implies the estimation of parametric
derivatives.

Rather than the comparison of two configurations, our focus on derivatives is mo-
tivated by the application of iterative gradient-based optimization in order to recover
scene parameters from observations. This is highly related to e.g. the work of Hall [85],
who proposed applying a Newton-Raphson iteration to optimize the experimental pa-
rameters with respect to a log-likelihood objective. Derivatives were also used for sensi-
tivity analysis [84, Chapter 6.II], for example to determine the effect of the uncertainties
in the reactors’ characteristic parameters on the reaction rates.

2.6.3 Differentiable rasterization

Beginning with the work on OpenDR by Loper and Black [86], a number of approximate
differentiable rendering techniques have been proposed in the field of computer vision.
Relying on smooth rasterization of meshes or volumes [87, 88, 89, 90], these methods
focus on primary visibility without accounting for indirect effects (shadows, interreflec-
tion, etc.). Petersen et al. [91] generalized smooth rasterization methods and studied the
effect of different aggregation functions.

Because it can rely on the hardware-accelerated standard graphics pipeline on GPUs,
differentiable rasterization can achieve impressive performance. Laine et al. [92] report
run times of 4.5 to 6.5 ms per 2048 × 2048 frame, including both the primal and gradi-
ent estimation passes. Their analytic anti-aliasing technique is illustrated in Figure 2.5.
This level of performance is particularly beneficial when incorporating a differentiable
rendering component within a larger end-to-end differentiable pipeline.

As an alternative to smooth rasterization, Zhou et al. [93] proposed differentiable
vectorization. Here, “vectorization” should be taken in the sense of vector graphics: in-
stead of rasterizing triangles to a discrete bitmap, the individual triangles are drawn to
an infinite-precision canvas. The final pixel color is thus smoothly related to the ver-
tex positions. This yields noise-free direct illumination, as well as noise-free gradients—

27

Chapter 2. Background

although limited to direct illumination, and with a cost expected to rise with the number
of visible edges. In the 2D domain, Li et al. [94] propose a differentiable vector graphics
rendering pipeline.

A B

Overlapping triangle

Plain rasterization

discontinuous

Anti-aliased

smooth

Figure 2.5: In the most basic form of rasterization, triangles from the scene are projected to the image

plane (left). After accounting for the triangles’ distance to the camera to resolve occlusion, a pixel takes

the color of a triangle if it overlaps with its center (center). However, this results in hard color transitions

and aliasing, which is particularly visible in diagonal lines. Moreover, this discrete choice introduces

a discontinuity with respect to the triangle vertex coordinates, which is not differentiable. Laine et al.

[92] compute the color of adjacent pixels as a function of the surface overlap, which is itself a function

of the vertex coordinates (right). A continuous relationship is therefore established between the scene

parameters and the final pixel color, allowing for differentiation. Other forms of smooth rasterization

operate similarly. Figure adapted from [92, Figure 3].

2.6.4 Physically based differentiable rendering

At the other end of the spectrum, physically based differentiable rendering methods
account for global illumination and more advanced phenomena such as participating
media. Just like primal rendering, many differentiable global illumination methods are
based on some form of path tracing.

In graphics. In the graphics community, interest in differentiable rendering dates back
several decades [95, 96], although the scalability and generality of the methods have
improved significantly in recent years. In early examples, only direct illumination was
accounted for, in order to solve for the unknowns (e.g. BSDF parameters) in closed form.
From the start, it was clear that under-determinism would be an important challenge in
inverse rendering.

The volumetric case has been investigated thoroughly over the last decade, with ap-
plications such as appearance capture of textiles [97, 98]. Later work has focused on
parametric derivatives to optimize the scattering properties of volumes [99, 100, 101,

28

Chapter 2. Background

Figure 2.6: In addition to the discontinuities from instantaneous changes in primary visibility, disconti-

nuities can appear at each step of global illumination algorithms such as path tracing (orange dots).

102], using differentiable volumetric path tracers. Zhao et al. [103] used gradients to dis-
cover similarity relations, i.e. sets of parameters that result in a similar final appearance
but at a fraction of the rendering cost.

Recently, methods have been proposed to differentiate through the entire path trac-
ing algorithm given arbitrary input scenes. Kasper et al. [104] focused on recovering
distant illumination using a differentiable path tracer. Li et al. [57] presented a fully
differentiable path tracer including support for discontinuities. Gradients are estimated
with manually derived functions, resulting in high performance but making the system
relatively hard to extend. The article’s implementation was released as the Redner li-
brary, whose development has since continued. These recent advances coincide with
the advent of hardware-accelerated ray tracing on GPUs, enabling performant imple-
mentations of path tracing on the GPU.

Inverse radiosity. Inverse radiosity (e.g. [105, 106]) was used to solve for near-field
illumination and Lambertian materials in indoor scenes.

Parametric discontinuities. In rasterization-based methods, discontinuities are typ-
ically handled by smoothing the rasterization step (such as with analytic anti-aliasing,
shown in Figure 2.5). With global illumination, the problem becomes much more difficult
due to silhouette discontinuities potentially occurring at every interaction (Figure 2.6).

29

Chapter 2. Background

As noted by Zeltner et al. [12], discontinuities additionally arise within the sampling
methods when using attached sampling techniques (see Section 3.2).

Without special handling of those discontinuities, some important gradient terms
will be entirely missing. Li et al. [57] introduced the first method to correctly account
for this effect in the context of physically-based rendering using a novel silhouette edge

sampling strategy. Edge sampling works by explicitly evaluating the integrand on both
sides of the discontinuity, essentially using finite differences at those locations. An accel-
eration data structure is built in order to efficiently sample edges based on the camera’s
viewpoint. One limitation of the edge sampling method is that its variance increases
with the tesselation level of the mesh.

Over several articles, Zhang et al. [107, 108, 109] have built a theoretical framework
for differentiable physically based rendering, including participating media. The authors
apply the Reynolds transport theorem [110] to split the derivative of the light transport
integral into a continuous “interior” term and a boundary term. Their formulation sup-
ports differentiating a wider class of rendering algorithms, and to build effective Monte
Carlo estimators that handle complex geometric discontinuities. Discontinuities were
first handled by explicit edge sampling, and later using a more efficient multi-directional
sampling scheme. The key idea of this scheme is to start by sampling a boundary seg-
ment in the scene, and from there expand in both directions to form a complete path
connecting the sensor to an emitter. Efficiency is improved by combining this technique
with next-event estimation and bidirectional path tracing in both the prefix and suffix
paths. Further improvements to the discontinuities sampling step were proposed by Yan
et al. [111].

Loubet et al. [112] introduced an alternative approach: reparametrizing the light
transport integral so that the new integration variable moves together with the discon-
tinuity. The reparametrized integral no longer contains parameter-dependent discon-
tinuities, and the appropriate gradients arise as part of the Jacobian of the change of
variable. An unbiased and formalized version of this approach was then derived by Ban-
garu et al. [113]. Vicini et al. [114] showed that signed distance functions (SDF) admit a
particularly efficient reparametrization technique.

Relation to our work. Chapters 3 and 4 discuss methods for differentiable rendering,
based on automatic differentiation and the adjoint method respectively. The focus is on
the efficient estimation of gradients, while still supporting global illumination. On the
other hand, our algorithms do not account for parameter discontinuities, such as the one
illustrated in Figure 2.6. The edge sampling and reparametrization-based methods de-

30

Chapter 2. Background

scribed above are nevertheless compatible with our approach, and can be combined [12].
The recent availability of differentiable path tracing algorithms opens up new ques-

tions, such as the effectiveness of standard sampling techniques initially designed for
primal rendering, when used as-is in the adjoint problem [12, 115]. Chapter 5 examines
such a case for differentiable volumetric path tracing.

2.6.5 Differentiable rendering and machine learning

In recent years, a growing number of methods have combined machine learning and
graphics. Some graphics techniques were augmented with learning elements, such as
caching radiance for global illumination using a neural network [116]. Likewise, some
computer vision methods now rely on an in-network “rendering layer”, e.g. [117]. In
such a case, the rendering component must be differentiable so that the entire pipeline
can be optimized end-to-end.

Neural radiance fields (NeRFs) [118] are perhaps the most successful example of this
convergence between learning and graphics. While similar methods for arbitrary view-
point re-rendering would tend to use deeper and deeper neural networks, NeRFs impose
a physically-inspired volumetric structure to the scene representation. Instead of letting
the network predict an entire image directly, it needs only output the scalar density and
RGB emission of a volume. Ray marching, a standard volume rendering technique, is
then used to compute the volume’s final appearance. Moving the rendering process out
of the network and into an explicit algorithm allows the network to be much smaller.
Subsequent works [119, 120] have shown that the neural network can be replaced by
a simple 3D grid data structure, while preserving most of the reconstruction quality. It
seems that the emissive volume representation, which is well behaved under optimiza-
tion, is key to the quality of the results.

In Chapter 10, we leverage such a NeRF-inspired emissive volume to bootstrap the
optimization of a physically based scattering volume, avoiding sub-optimal local minima.

2.6.6 Applications of differentiable rendering

Inverse reconstruction problems are found in a number of fields, making differentiable
rendering applicable to a wide variety of image- or light transport-based applications.

Inverse rendering. First, the potential in vision-style shape and material acquisition
is clear. Early examples include face reconstruction [95] and the factorization of BRDF

31

Chapter 2. Background

and lighting assuming single scattering [96]. Khungurn et al. [97] and Zhao et al. [98] use
micro CT scans to fit the parameters of fabric or yarn-level appearance models. Volume
parameters can be estimated from images [99, 101, 121]—this is also the topic of Chap-
ters 5 and 10. Recently, the parameters of procedural material graphs were optimized
to match image examplars [122, 123, 124, 125, 126]. For single objects, joint recovery
of shape and materials has been demonstrated [127]. At a larger scale, Azinović et al.
[128] recovered the lighting and materials of entire rooms while accounting for global
illumination. In Chapter 11, we perform such a reconstruction on real data.

These inverse rendering methods may soon become an integral part of digital content
creation workflows. Usage of physically based inverse rendering methods allows for the
captured materials and shapes to be repurposed, edited and relit seamlessly—as opposed
to simpler methods that may merge all lighting information into the result.

Scientific applications. Beyond standard computer vision problem settings, differ-
entiable graphics opens the door to a wide range of scientific applications. Sun et al.
[129] proposed an end-to-end differentiable pipeline for lens design, optimizing the lens
parameters and a neural network jointly for desirable properties such as extended depth-
of-field. Nindel et al. [130] optimized the color and opacity of printed materials for more
accurate color reproduction in 3D printing. In Chapter 9, we optimize the surface of a
slab of glass, or a lens with a continuously-varying index of refraction, to cast light from
a uniform source into arbitrary caustic patterns.

Differentiable physically based rendering has also been used to obtain sharper X-ray
reconstructions for medical imaging [131], to estimate the shape and properties of clouds
[132, 133, 134], and to identify the nature and pose of space debris [135].

Even though some of these problems may currently be solved using heuristic or
learning-based methods, developing a physically based solution can lead to improved
results and interpretability.

Primal rendering. Finally, derivatives have been put to use in the context of forward
rendering, e.g. to estimate spatial and directional gradients for adaptive sampling and
interpolation [136] or local curvature to construct better Monte Carlo Markov Chain
proposal distributions [82].

32

Part I

Algorithms

33

We now turn to the physically based differentiable rendering algorithms developed over
the course of this thesis.

Problem setting. Our main concern is the efficient estimation of image gradients with
respect to scene parameters. Consider for example the classic inverse rendering problem
illustrated in Figure 2.7: given one or more photographs of a scene which we wish to
reconstruct digitally, we must recover scene parameters (object shapes and positions,
lighting, material models, etc) that faithfully match the observations. Since the rendering
function is much too complex to invert analytically—at least in the case of physically
based rendering—we turn to gradient-based optimization. We start from an initial guess
of the scene state, and progressively refine it according to an objective function which
quantifies, as well as feasible, the distance between the current and goal states. Every
time the scene parameters are updated after a gradient step, we render the new state of
the scene. This is an analysis by synthesis approach.

Typical objective functions include the pixelwise 𝐿1 and 𝐿2 distances between the
re-rendered images and the references, which are also called photometric losses.

Beyond standard object or scene reconstruction, many applications can benefit from
efficient scene parameter gradient estimation, see Section 2.6.6.

Challenges. The number of parameters to optimize vary drastically depending on the
application and particular scene, from e.g. a single roughness value to tens of millions
of texture entries. For this reason, we focus on methods that support so-called reverse-

mode or backpropagation. In other words, we must be able to transform gradients w.r.t. a
single or few outputs (e.g. the objective value) to gradients w.r.t. many inputs (the scene
parameters).

The main difficulty we will encounter is that the presence of global illumination and
realistic material models in the scene create complex inter-dependencies between scene
parameters: one parameter on an object may strongly influence the appearance of the
entire scene, even if that object is not observed directly. Furthermore, we are faced with
highly heterogeneous and dynamic computations. For example, a scene can contain
dozens of different material models, which only become known at runtime. This is in
contrast with gradient-based optimizations in the field of machine learning, where the
computation is regular and mostly static.

Scope. The algorithms proposed in this thesis are restricted to the evaluation of gra-
dients of continuous integrands, such as the spatially-varying albedo of a diffuse surface,

34

Scene parameters

…

Scene structure & layout Camera

Primal rendering

Reference image

Path tracing

Backpropagation

Objective
function

Adjoint rendering

Parameter
gradients

Gradient descent

Figure 2.7: Without loss of generality, we use the following inverse rendering setting as a reference prob-

lem. We are given one or multiple reference images, which represent the goal state. We pick a starting

guess for the scene state: what objects are placed in the scene, their shapes and material properties, the

intensity of light sources, camera positions, etc. In the following, we propose algorithms that efficiently

estimate the gradients of an arbitrary objective function w.r.t. scene parameters. This operation is la-

beled “backpropagation” above. We can then run a gradient descent-based stochastic optimization loop,

refining the parameters until the state of the scene converges to the desired state—or at least to the local

minimum closest to the initialization.

35

or the density of a 3D scattering volume. Other scene parameters, such as the position
of mesh vertices or the camera viewpoint, induce discontinuous changes in the render-
ing integral. Gradients accounting for those changes will be missing from our methods’
output.

These cases must be handled with methods that have been developed in concurrent
work, such as edge sampling [57] and reparametrizations [112, 113, 114], discussed in
Section 2.6.4. Luckily, they are orthogonal to and compatible with the algorithms pre-
sented here, and can therefore be combined [12].

Terminology. Consider a function 𝑓 (𝜽). We refer to the estimation of 𝑓 (𝜽) itself
as the primal problem, and that of 𝜕𝜽 𝑓 (𝜽) as the adjoint problem. In the context of
rendering, the primal is the main or “forward” rendering process which outputs an image
of the scene. The adjoint is the inverse or “backward” rendering process, which estimates
gradients of (typically) an objective function w.r.t. the scene parameters 𝜽 .

Furthermore, in the context of automatic differentiation, we use the term detached to
refer to quantities that do not participate in gradient computation: they will be treated as
constants. Unless specified, quantities are attached to the computation graph by default.
Note that whether a given term is attached or detached has no effect on the result of the
primal computation, but does impact correctness of the adjoint (see Figure 3.3).

Overview. We contribute two algorithms for efficient computation of gradients with
respect to many scene parameters. We start by describing usage of reverse-mode auto-
matic differentiation and its limitations in Chapter 3. We then present radiative backprop-
agation in Chapter 4, an adjoint method that recasts gradient estimation as a modified
rendering problem. Finally, we introduce differential ratio tracking in Chapter 5, a spe-
cialized sampling technique for inverse volume rendering, which yields unbiased and
low-variance gradients.

36

3 | Differentiable renderingwith au-
tomatic differentiation

Relevant background: Sections 2.3 and 2.6.4.

Since our objective is to compute gradients of very complex functions, automatic dif-

ferentiation is an enticing solution. Indeed, being able to simply write the rendering
code (e.g. a path tracer) and automatically obtaining correct gradients is an ideal situ-
ation for researchers and practitioners. In fact, the availability of high-level AD-based
frameworks such as TensorFlow [61] and PyTorch [62] certainly contributed to the rapid
advancement of machine learning research. However, we will show that several chal-
lenges make the applicability of AD to differentiable physically based rendering limited
to simple applications and that correctness is not guaranteed.

3.1 Algorithm

As we have seen in the introduction, scenes may contain tens of millions of parame-
ters that must be optimized simultaneously. For this reason, we focus on reverse-mode

automatic differentiation.
Chapter 7 describes the design of Mitsuba 2, a differentiable physically based render-

ing system supporting AD. A great advantage of such a system is that users can easily
implement new components such as rendering algorithms, BSDFs, emitters, sensors, etc,
without providing additional code dedicated to the estimation of gradients.

Interestingly, since we only require local derivatives and do not handle discontinu-
ities, not all parts of the system must be subject to differentiation. In particular, we do
not need to differentiate the ray tracing procedure, which represents a large part of the
computational burden. It is enough to use it in a detached manner, as if it were a lookup
function that maps rays to triangle IDs. We can then compute the local quantities such as
the exact intersection point within the triangle, texture coordinates and shading normals
from the ID and barycentric coordinates.

Given such a system, we can already obtain many useful gradients such as BSDF
texture parameters or emitter intensity. However, extensive usage of Mitsuba 2’s AD
mode for inverse rendering revealed several pitfalls that we examine below.

37

Chapter 3. Differentiable rendering with automatic differentiation

3.2 Correctness

Although it is tempting to directly apply AD to the entire implementation of our algo-
rithms of choice, this may lead to incorrect results.

Correlation between primal and adjoint estimators. First off, Gkioulekas et al.
[99] (and later Azinović et al. [128]) have shown that in the context of Monte Carlo-
based stochastic optimization, we must decorrelate our estimates of the primal and the
adjoint. Indeed, consider for example minimizing the 𝐿2 distance of a rendered image 𝐼

to a reference image 𝐼ref over scene parameters 𝜽 :

𝑔(𝐼) = 1
2 | |𝐼 − 𝐼ref | |22. (3.1)

We take the derivative w.r.t. 𝜽 in order to use gradient-based optimization:

𝜕𝜽𝑔(𝐼) = (𝐼 − 𝐼ref) 𝜕𝜽 𝐼 . (3.2)

Unfortunately, in practice we do not have access to the true values of 𝐼 and 𝜕𝜽 𝐼—only
noisy estimates 𝐼 and 𝜕𝜽 𝐼 . If there is any correlation between the two estimates, their
product will not in general be an unbiased estimate of the true product:

E[(𝐼 − 𝐼ref) 𝜕𝜽 𝐼] ≠ E[𝐼 − 𝐼ref] E[𝜕𝜽 𝐼] . (3.3)

We must then ensure that the two estimates are decorrelated. In the context of dif-
ferentiable path tracing, this will involve tracing a separate set of paths in the primal and
adjoint passes, rather than backpropagating directly over the primal rays. The resulting
bias is illustrated in Figure 3.1 by computing gradients w.r.t. albedos of the Cornell box
surfaces.

Importantly, this consideration applies to all gradient estimation methods and is not
limited to AD—although the mistake is particularly easy to make with AD as the product
of the correlated terms is carried out automatically by the system.

Objectivewith non-linear gradients. Now consider another objective function𝑔(𝐼)
such that 𝜕𝐼 𝑔(𝐼) is not linear, for example the 𝐿1 loss:

𝑔(𝐼) = |𝐼 − 𝐼ref | . (3.4)

This non-linearity leads to another source of bias in the gradients:

E[𝜕 𝑔
𝜕𝐼

(𝐼)] ≠ 𝜕 𝑔

𝜕𝐼
(E[𝐼]) (3.5)

38

Chapter 3. Differentiable rendering with automatic differentiation

Le� wall Right wall Floor Ceiling Back wall Short box Tall box
Scene parameter

−0.020

−0.015

−0.010

−0.005

0.000

Gr
ad

ie
nt

va
lu

e

Estimators
Correlated
Decorrelated
Finite di�erences

Figure 3.1: Computing gradients w.r.t. the albedo of the Cornell box’s surfaces (red channel only). To test

unbiasedness, gradients are estimated 64 times with 1 sample per pixel (spp) and averaged together. We

first use correlated forward and adjoint estimators, which leads to bias (Equation (3.3)). By decorrelating

the estimators (i.e. using different RNG seeds), we obtain correct gradients, matching the finite differences

reference (𝜖 = 5 · 10−3
).

We do not address this issue in this thesis: when an objective function with non-
linear derivatives is used in our experiments, we assume that the sample count is suffi-
cient to make the bias negligible. Nevertheless, this source of bias and its practical effects
should be further investigated in future work.

Discontinuities. Most AD systems are only able to detect and handle continuous op-
erations on floating point variables. In particular, control flow operations such as if and
while, as well as discontinuous (delta) changes will not contribute to the gradients. This
bias is illustrated in Figure 3.2 using Mitsuba 3’s AD mode to estimate gradients w.r.t.
the horizontal translation of an object. Shading gradients are correctly accounted for,
but the effect of visibility changes at the silhouette is missing.

Discontinuities could be handled with AD by adding explicit support for delta func-
tion and integration as first-class citizens [77, 78]. However, this remains out of scope
for this thesis.

Attached and detached estimators. Finally, Zeltner et al. [12] highlighted another
source of bias when combining Monte Carlo estimators with AD. Consider for example

39

Chapter 3. Differentiable rendering with automatic differentiation

(a) Primal rendering (b) Automatic differentiation (c) Finite differences (𝜖 = 5 · 10−2
)

Figure 3.2: Gradients from discontinuous (delta) changes are missing when using AD (bias). We visualize

the effect of the horizontal translation of the teapot mesh (a) on the pixel values (“forward gradients”).

Automatic differentiation (b) correctly accounts for changes to shading, but misses the silhouette (visi-

bility) gradients. Finite differences (c) include all terms, including secondary effects such as changes to

the teapot’s shadows due to the translation.

the following infinite sum:

𝑓 (𝜽) =
∞∑︁
𝑖=0

(
𝑖∏
𝑗=1

exp(−(𝑡 𝑗 − 𝑡 𝑗−1) 𝜽)
)
𝑐𝑖, (3.6)

It is modeled after the transmittance estimation problem in heterogeneous volumes (Sec-
tion 2.2.3), where 𝜽 plays a role analogous to the medium density 𝜎𝑡 . In Figure 3.3, we
show that a direct application of AD to the Russian roulette (RR) estimator of this sum
incorrect gradient unless special care is taken to detach the RR weight𝑤 . In other words,
even if𝑤 involves the differentiable parameter 𝜽 , it should be treated as a constant from
the perspective of the AD system. More generally, any sampling weight stemming from
a discrete decision, which is not visible to the AD system, should be detached [12]. This
example further confirms that we cannot blindly apply AD to complex Monte Carlo sim-
ulations.

3.3 Memory usage

The cost of maintaining a complex AD graph for highly dynamic code at runtime can be
amortized by simulating many rays in parallel, effectively “widening” the graph. This is
called vector-mode AD [58]. Section 7.2.3 discusses these considerations in more detail.

However, as the complexity of the computation graph—and therefore the edge count—
quickly grows with the length of simulated light paths, the AD graph often saturates

40

Chapter 3. Differentiable rendering with automatic differentiation

A�ached Detached Disabled Ground truth
Russian roule�e

0

2

4

6

8

10

Pr
im

al
va

lu
e

A�ached Detached Disabled Ground truth
Russian roule�e

−8

−6

−4

−2

0

Gr
ad

ie
nt

va
lu

e

Figure 3.3: We estimate values of 𝑓 (𝜽) from Equation (3.6) and its gradients 𝜕𝜽 𝑓 (𝜽) with either a fixed

and large number of terms (4096), stochastically with Russian roulette, or analytically. All variants match

the ground truth for the primal value 𝑓 (𝜽). However, gradients computed with AD are incorrect when

the Russian roulette continuation probability is attached, i.e. part of the computation graph.

available memory. This is especially true when running on the GPU, where memory is
at a premium. The memory consumption of inverse rendering in Mitsuba 3 for two sim-
ple relatively simple test scenes is given in Table 3.1. For the trivial Cornell box scene,
an excerpt of the computation graph is shown in Figure 3.4. Note these measurements
already include numerous graph simplifications and optimizations.

Although it remains possible to reduce memory usage by splitting the computation
into smaller batches and averaging together the resulting images or gradients, the total
runtime grows linearly with the number of passes and quickly becomes impractical for
most non-trivial scenes.

Table 3.1: GPU memory usage for simple AD-based inverse rendering scenarios in Mitsuba 3. The size

of the AD graph becomes the main bottleneck and prevents scaling to larger problem instances.

Scene Resolution # params Memory

Cornell box 256 × 256 @ 4spp 24 1.219 GiB
Cornell box 720 × 720 @ 8spp 24 19.52 GiB
Staircase 256 × 256 @ 4spp 55364559 2.296 GiB
Staircase 720 × 720 @ 8spp 55364559 20.53 GiB

3.4 Selective usage of AD

Despite the shortcomings described above, we believe there is strong value in selective
applications of AD. In fact, we introduce an adjoint method in Chapter 4 which allows

41

Chapter 3. Differentiable rendering with automatic differentiation

replacing most of the AD graph with a modified rendering problem. AD remains useful
for the generation of adjoint programs computing all quantities that are not directly
related to the light transport itself, such as BSDF and emitter evaluations. These adjoint
programs are discussed in more detail in Chapter 8.

42

Chapter 3. Differentiable rendering with automatic differentiation

Literal constant: 1

Type: cuda f32 Size: 1

r97 E:144 I:7

sub.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1928 E:0 I:1

 2

sub.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1946 E:0 I:1

 2

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1962 E:0 I:1

 3

Label: "Loop (Path Tracer) [in 11, cond]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2071 E:0 I:2

Label: "Loop (Path Tracer) [in 12, cond]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2072 E:0 I:2

Label: "Loop (Path Tracer) [in 13, cond]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2073 E:0 I:2

Label: "Loop (Path Tracer) [in 17, cond]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2077 E:0 I:2

Literal constant: 0

Type: cuda f32 Size: 1

r98 E:436 I:13

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1961 E:0 I:1

 1 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1963 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1964 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1966 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1967 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1969 E:0 I:1

 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1981 E:0 I:2

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1982 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1984 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1985 E:0 I:2

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1986 E:0 I:2

 1

Type: cuda void Size: 8388608

r3901 E:0 I:6

 11

Literal constant: 278

Type: cuda f32 Size: 1

r99 E:1 I:1

add.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1997 E:0 I:1

 1

Literal constant: 273

Type: cuda f32 Size: 1

r100 E:1 I:1

add.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1998 E:0 I:1

 1

Literal constant: -800

Type: cuda f32 Size: 1

r101 E:1 I:1

add.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1999 E:0 I:1

 1

Evaluated

Type: cuda u64 Size: 1

r1771 E:1 I:1

 2

shr.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1894 E:0 I:2

add.$t0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1855 E:0 I:1

xor.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1851 E:0 I:1

xor.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1854 E:0 I:1

 1

 2

 2

cvt.$t0.$t1 $r0, $r1

Type: cuda u64 Size: 8388608

r1857 E:0 I:1

add.$t0 $r0, $r1, $r2

Type: cuda u64 Size: 8388608

r1872 E:0 I:1

 2

cvt.u32.$t2 %r3, $r2
shl.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r1862 E:0 I:1

 1

Literal constant: 0

Type: cuda u64 Size: 1

r1858 E:0 I:1

mad.lo.$t0 $r0, $r1, $r2, $r3

Type: cuda u64 Size: 8388608

r1865 E:0 I:1

 1

Literal constant: 1

Type: cuda u64 Size: 1

r1861 E:0 I:2

 2

or.$b0 $r0, $r1, $r2

Type: cuda u64 Size: 8388608

r1863 E:1 I:10

 2

 1

 3

mad.lo.$t0 $r0, $r1, $r2, $r3

Type: cuda u64 Size: 8388608

r1873 E:0 I:4

 3

mad.lo.$t0 $r0, $r1, $r2, $r3

Type: cuda u64 Size: 8388608

r1905 E:0 I:4

 3

mad.lo.$t0 $r0, $r1, $r2, $r3

Type: cuda u64 Size: 8388608

r1929 E:0 I:1

 3

mad.lo.$t0 $r0, $r1, $r2, $r3

Type: cuda u64 Size: 8388608

r5024 E:0 I:1

 3

mad.lo.$t0 $r0, $r1, $r2, $r3

Type: cuda u64 Size: 8388608

r5048 E:0 I:1

 3

mad.lo.$t0 $r0, $r1, $r2, $r3

Type: cuda u64 Size: 8388608

r5427 E:0 I:4

 3

mad.lo.$t0 $r0, $r1, $r2, $r3

Type: cuda u64 Size: 8388608

r5445 E:0 I:4

 3

mad.lo.$t0 $r0, $r1, $r2, $r3

Type: cuda u64 Size: 8388608

r5463 E:0 I:4

 3

mad.lo.$t0 $r0, $r1, $r2, $r3

Type: cuda u64 Size: 8388608

r5630 E:0 I:1

 3

Literal constant: 6364136223846793005

Type: cuda u64 Size: 1

r1864 E:0 I:4

 2

 2

 2

 2

 1

 1

 1

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r1907 E:0 I:1

 1

xor.$b0 $r0, $r1, $r2

Type: cuda u64 Size: 8388608

r1908 E:0 I:1

 2

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r1913 E:0 I:1

 1

Evaluated

Type: cuda u32 Size: 1

r1893 E:0 I:1

 2

shr.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1897 E:0 I:2

 1

mad.lo.$t0 $r0, $r1, $r2, $r3

Type: cuda u32 Size: 8388608

r1900 E:0 I:1

 3

Literal constant: 8

Type: cuda u32 Size: 1

r1896 E:0 I:1

 2

neg.s32 $r0, $r1

Type: cuda u32 Size: 8388608

r1899 E:0 I:1

cvt.rn.$t0.$t1 $r0, $r1

Type: cuda f32 Size: 8388608

r1903 E:0 I:1

Literal constant: 256

Type: cuda u32 Size: 1

r1898 E:0 I:1

 1 2

cvt.rn.$t0.$t1 $r0, $r1

Type: cuda f32 Size: 8388608

r1902 E:0 I:1

add.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1947 E:0 I:1

 1

add.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1948 E:0 I:1

 1

Literal constant: 1

Type: cuda msk Size: 1

r1904 E:0 I:1

Label: "Loop (Path Tracer) [in 30, cond]"

mov.$t0 $r0, $r1

Type: cuda msk Size: 8388608

r2090 E:0 I:2

 1

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r1930 E:0 I:1

 1

xor.$b0 $r0, $r1, $r2

Type: cuda u64 Size: 8388608

r1931 E:0 I:1

 2

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r1934 E:0 I:1

 1

Literal constant: 18

Type: cuda u64 Size: 1

r1906 E:0 I:2

 2

 2

 1

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r1910 E:0 I:1

 1

Literal constant: 27

Type: cuda u64 Size: 1

r1909 E:0 I:2

 2

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r1932 E:0 I:1

 2

cvt.$t0.$t1 $r0, $r1

Type: cuda u32 Size: 8388608

r1911 E:0 I:2

shr.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1915 E:0 I:1

 1

shl.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1921 E:0 I:1

 1

Literal constant: 59

Type: cuda u64 Size: 1

r1912 E:0 I:2

 2

 2

cvt.$t0.$t1 $r0, $r1

Type: cuda u32 Size: 8388608

r1914 E:0 I:2

 2

mov.$b0 $r0, $r1

Type: cuda i32 Size: 8388608

r1916 E:0 I:1

or.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1922 E:0 I:1

 1

neg.$t0 $r0, $r1

Type: cuda i32 Size: 8388608

r1917 E:0 I:1

and.$b0 $r0, $r1, $r2

Type: cuda i32 Size: 8388608

r1919 E:0 I:1

 1

Literal constant: 31

Type: cuda i32 Size: 1

r1918 E:0 I:2

 2

and.$b0 $r0, $r1, $r2

Type: cuda i32 Size: 8388608

r1939 E:0 I:1

 2

mov.$b0 $r0, $r1

Type: cuda u32 Size: 8388608

r1920 E:0 I:1

 2

 2

shr.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1924 E:0 I:1

 1

Literal constant: 9

Type: cuda u32 Size: 1

r1923 E:0 I:2

 2

shr.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1943 E:0 I:1

 2

or.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1926 E:0 I:1

 1

Literal constant: 1065353216

Type: cuda u32 Size: 1

r1925 E:0 I:2

 2

or.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1944 E:0 I:1

 2

mov.$b0 $r0, $r1

Type: cuda f32 Size: 8388608

r1927 E:0 I:1

 1

 2

Label: "Loop (Path Tracer) [in 2, cond]"

mov.$t0 $r0, $r1

Type: cuda u64 Size: 8388608

r2062 E:0 I:3

 1

 1

cvt.$t0.$t1 $r0, $r1

Type: cuda u32 Size: 8388608

r1933 E:0 I:2

shr.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1936 E:0 I:1

 1

shl.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1941 E:0 I:1

 1

cvt.$t0.$t1 $r0, $r1

Type: cuda u32 Size: 8388608

r1935 E:0 I:2

 2

mov.$b0 $r0, $r1

Type: cuda i32 Size: 8388608

r1937 E:0 I:1

or.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r1942 E:0 I:1

 1

neg.$t0 $r0, $r1

Type: cuda i32 Size: 8388608

r1938 E:0 I:1

 1

mov.$b0 $r0, $r1

Type: cuda u32 Size: 8388608

r1940 E:0 I:1

 2

 2

 1

 1

mov.$b0 $r0, $r1

Type: cuda f32 Size: 8388608

r1945 E:0 I:1

 1

 2

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1951 E:0 I:4

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1952 E:0 I:4

 1

Literal constant: 0.00390625

Type: cuda f32 Size: 1

r1949 E:0 I:2

 2

 2

Literal constant: -0

Type: cuda f32 Size: 1

r1950 E:0 I:2

 3

 3

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1960 E:0 I:1

 2 2 2 2

 2

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1965 E:0 I:1

 2 2 2

Literal constant: 0.357143

Type: cuda f32 Size: 1

r1957 E:0 I:2

 3 3

Literal constant: 0.1

Type: cuda f32 Size: 1

r1958 E:0 I:1

 3

Literal constant: -0.714287

Type: cuda f32 Size: 1

r1959 E:0 I:2

 1

 1

 3 3 3 3

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1971 E:0 I:3

 1

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1972 E:0 I:3

 1

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1973 E:0 I:3

 1

 3

Literal constant: -0.0996429

Type: cuda f32 Size: 1

r1968 E:0 I:1

 1

rcp.approx.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r1970 E:0 I:3

 2

 2

 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1974 E:0 I:1

 1 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1978 E:0 I:2

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1975 E:0 I:1

 1 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1979 E:0 I:3

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r1976 E:0 I:1

 1 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1980 E:0 I:4

 1

 3

 3

rsqrt.approx.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r1977 E:0 I:3

 2 2

 2

 2 3 2

add.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1983 E:0 I:1

 1 2

 2

 2

add.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1987 E:0 I:2

 1

rcp.approx.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r1989 E:0 I:2

 2 3 3

 3 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1994 E:0 I:1

 1

Label: "Loop (Path Tracer) [in 6, cond]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2066 E:0 I:2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1995 E:0 I:1

 1

Label: "Loop (Path Tracer) [in 7, cond]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2067 E:0 I:2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1996 E:0 I:1

 1

Label: "Loop (Path Tracer) [in 8, cond]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2068 E:0 I:2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1991 E:0 I:4

 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r1993 E:0 I:1

 2

Literal constant: 10

Type: cuda f32 Size: 1

r1990 E:0 I:1

 1

 2 2 2

sub.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r2000 E:0 I:1

 2

Literal constant: 2800

Type: cuda f32 Size: 1

r1992 E:0 I:1

 1

 1

 2 2 2

Label: "Loop (Path Tracer) [in 3, cond]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2063 E:0 I:2

Label: "Loop (Path Tracer) [in 4, cond]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2064 E:0 I:2

Label: "Loop (Path Tracer) [in 5, cond]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2065 E:0 I:2

Label: "Loop (Path Tracer) [in 9, cond]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2069 E:0 I:2

Literal constant: 0

Type: cuda u32 Size: 1

r2056 E:0 I:1

Label: "Loop (Path Tracer) [in 18, cond]"

mov.$t0 $r0, $r1

Type: cuda u32 Size: 8388608

r2078 E:0 I:2

Label: "Loop (Path Tracer) [in 2, body]"

mov.$t0 $r0, $r1

Type: cuda u64 Size: 8388608

r2095 E:0 I:1

 1

Label: "Loop (Path Tracer) [end]"

Type: cuda void Size: 8388608

r5661 E:0 I:1

 17

Label: "Loop (Path Tracer) [out 2]"

mov.$t0 $r0, $r1

Type: cuda u64 Size: 8388608

r5662 E:1 I:0

 1

Label: "Loop (Path Tracer) [in 3, body]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2096 E:0 I:1

 1

 18

Label: "Loop (Path Tracer) [in 4, body]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2097 E:0 I:1

 1

 19

Label: "Loop (Path Tracer) [in 5, body]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2098 E:0 I:1

 1

 20

Label: "Loop (Path Tracer) [in 6, body]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2099 E:0 I:2

 1

 21

Label: "Loop (Path Tracer) [in 7, body]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2100 E:0 I:2

 1

 22

Label: "Loop (Path Tracer) [in 8, body]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2101 E:0 I:2

 1

 23

Label: "Loop (Path Tracer) [in 9, body]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2102 E:0 I:1

 1

 24

Label: "Loop (Path Tracer) [in 11, body]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2104 E:0 I:1

 1

 25

Label: "Loop (Path Tracer) [in 12, body]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2105 E:0 I:1

 1

 26

Label: "Loop (Path Tracer) [in 13, body]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2106 E:0 I:1

 1

 27

Label: "Loop (Path Tracer) [in 17, body]"

mov.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r2110 E:0 I:1

 1

 28

Label: "Loop (Path Tracer) [in 18, body]"

mov.$t0 $r0, $r1

Type: cuda u32 Size: 8388608

r2111 E:0 I:2

 1

 29

Label: "Loop (Path Tracer) [cond]"

Type: cuda void Size: 8388608

r2092 E:0 I:1

 1

 30

Label: "Loop (Path Tracer) [init]"

Type: cuda void Size: 8388608

r2091 E:0 I:15

 2

 2

 2 2 2 2 2 2

 2

 2 2 2 2

 2

 1

 2

 1

 3 4 5 6

neg.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r4863 E:0 I:1

 7

neg.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r4864 E:0 I:1

 8

neg.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r4865 E:0 I:2

 10

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5608 E:0 I:3

 1

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5609 E:0 I:3

 1

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5610 E:0 I:3

 1

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5611 E:0 I:3

 1

add.$t0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5008 E:0 I:2

 1

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda u32 Size: 8388608

r5621 E:0 I:2

 3

Literal constant: 0

Type: cuda u32 Size: 1

r3895 E:0 I:16

 13 14 16 17 18 19 20 21 22

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda u32 Size: 8388608

r3917 E:0 I:1

 2

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda u32 Size: 8388608

r3918 E:0 I:2

 2

setp.eq.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r3919 E:0 I:1

 2

setp.ne.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r3921 E:0 I:1

 2

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda u32 Size: 8388608

r4809 E:0 I:2

 2

setp.ne.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r4902 E:0 I:1

 2

setp.ne.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r5016 E:0 I:1

 2

Literal constant: 1

Type: cuda msk Size: 1

r3897 E:0 I:1

 1

Literal constant: 255

Type: cuda u32 Size: 1

r3898 E:0 I:1

 12

Literal constant: 1

Type: cuda u32 Size: 1

r3899 E:0 I:2

 15

 2

Literal constant: 0

Type: cuda f32 Size: 1

r3900 E:0 I:7

 9

setp.eq.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r4825 E:0 I:1

 2

setp.eq.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r4826 E:0 I:1

 2

setp.eq.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r4827 E:0 I:1

 2

setp.ge.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r4830 E:0 I:4

 2

setp.ge.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r5602 E:0 I:1

 2

setp.ne.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r5659 E:0 I:1

 2

mov.u32 $r0, $r1_result_0

Type: cuda u32 Size: 8388608

r3902 E:0 I:1

mov.u32 $r0, $r1_result_1

Type: cuda u32 Size: 8388608

r3903 E:0 I:1

mov.u32 $r0, $r1_result_2

Type: cuda u32 Size: 8388608

r3904 E:0 I:1

mov.u32 $r0, $r1_result_3

Type: cuda u32 Size: 8388608

r3905 E:0 I:3

mov.u32 $r0, $r1_result_4

Type: cuda u32 Size: 8388608

r3906 E:0 I:1

mov.u32 $r0, $r1_result_5

Type: cuda u32 Size: 8388608

r3907 E:0 I:1

mov.$b0 $r0, $r1

Type: cuda f32 Size: 8388608

r3909 E:0 I:3

mov.$b0 $r0, $r1

Type: cuda f32 Size: 8388608

r3910 E:0 I:2

mov.$b0 $r0, $r1

Type: cuda f32 Size: 8388608

r3911 E:0 I:2

mov.$t0 $r0, $r1

Type: cuda u32 Size: 1

r3934 E:0 I:1

Label: "VCall: mitsuba::Shape::compute_surface_interaction()"

Type: cuda void Size: 8388608

r4782 E:0 I:13

 8

Label: "VCall: mitsuba::BSDF::sample()"

Type: cuda void Size: 8388608

r5576 E:0 I:3

 12

 3 3

setp.ne.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r3915 E:0 I:3

 1

mov.$t0 $r0, $r1

Type: cuda f32 Size: 1

r3931 E:0 I:1

 5

 6

 7

Literal constant: inf

Type: cuda f32 Size: 1

r3914 E:0 I:3

 2

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 8388608

r4805 E:0 I:1

 2

setp.ne.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r4806 E:0 I:3

 2

not.$b0 $r0, $r1

Type: cuda msk Size: 8388608

r3916 E:0 I:3

and.$b0 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r3922 E:0 I:2

 1

and.$b0 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r4807 E:0 I:2

 1

 1 1

 1

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda u32 Size: 8388608

r3920 E:0 I:2

 2

 1

 3

 1

 1

 1 2

 2

selp.$b0 $r0, $r1, 0, $r2

Type: cuda f32 Size: 8388608

r4783 E:0 I:1

 2

 1

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [call offsets]"

Evaluated

Type: cuda u64 Size: 9

r4778 E:0 I:1

Literal constant: 0x40200bc00

Type: cuda ptr Size: 1

r4779 E:0 I:1

 3

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [call data]"

Evaluated

Type: cuda u8 Size: 192

r4780 E:0 I:1

Literal constant: 0x40200a800

Type: cuda ptr Size: 1

r4781 E:0 I:1

 4

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [out 2]"

Type: cuda f32 Size: 8388608

r4788 E:0 I:3

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [out 3]"

Type: cuda f32 Size: 8388608

r4789 E:0 I:3

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [out 4]"

Type: cuda f32 Size: 8388608

r4790 E:0 I:3

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [out 5]"

Type: cuda f32 Size: 8388608

r4791 E:0 I:2

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [out 6]"

Type: cuda f32 Size: 8388608

r4792 E:0 I:2

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [out 7]"

Type: cuda f32 Size: 8388608

r4793 E:0 I:2

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [out 8]"

Type: cuda u32 Size: 8388608

r4794 E:0 I:1

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [out 17]"

Type: cuda f32 Size: 8388608

r4795 E:0 I:12

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [out 18]"

Type: cuda f32 Size: 8388608

r4796 E:0 I:8

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [out 19]"

Type: cuda f32 Size: 8388608

r4797 E:0 I:9

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [out 20]"

Type: cuda f32 Size: 8388608

r4798 E:0 I:3

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [out 21]"

Type: cuda f32 Size: 8388608

r4799 E:0 I:3

Label: "VCall: mitsuba::Shape::compute_surface_interaction() [out 22]"

Type: cuda f32 Size: 8388608

r4800 E:0 I:3

 3

abs.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r5256 E:0 I:1

 5

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r5604 E:0 I:1

 3

abs.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r5257 E:0 I:1

 6

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r5605 E:0 I:1

 3

abs.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r5258 E:0 I:1

 7

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r5606 E:0 I:1

 3

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5599 E:0 I:1

 1

 2

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r5600 E:0 I:1

 1

 2

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r5601 E:0 I:1

 1

 2

 3

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4811 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r4815 E:0 I:3

 1

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4837 E:0 I:1

 1

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4839 E:0 I:1

 1 2

neg.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r4846 E:0 I:1

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 8388608

r4847 E:0 I:1

 3

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4855 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r4862 E:0 I:1

 1

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4872 E:0 I:1

 2

 8

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r5596 E:0 I:2

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r4812 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r4816 E:0 I:3

 1

 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4856 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r4858 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r4873 E:0 I:1

 2

 9

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r5597 E:0 I:2

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r4813 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r4817 E:0 I:3

 1

 1

add.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4834 E:0 I:1

 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4854 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r4860 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r4874 E:0 I:1

 2

 10

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r5598 E:0 I:2

 1

 2

 3

 1

 2

 3

 1

 2

 3

 1

 1

 2

and.$b0 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r5011 E:0 I:2

 2

 1

not.$b0 $r0, $r1

Type: cuda msk Size: 8388608

r4808 E:0 I:1

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 8388608

r4877 E:0 I:2

 1

 1

 1

mad.wide.$t2 %rd3, $r2, $s0, $r1
@$r3 ld.global.nc.$t0 $r0, [%rd3]
@!$r3 mov.$b0 $r0, 0

Type: cuda u32 Size: 8388608

r5014 E:0 I:2

 2

 3

 3

neg.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r4814 E:0 I:3

 2 2 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4818 E:0 I:1

 1 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4822 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r4819 E:0 I:1

 1 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4823 E:0 I:1

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r4820 E:0 I:1

 1 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4824 E:0 I:1

 1

 3

 3

rsqrt.approx.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r4821 E:0 I:3

 2 2 2

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 8388608

r4851 E:0 I:3

 3

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 8388608

r4852 E:0 I:3

 3

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 8388608

r4853 E:0 I:3

 3

and.$b0 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r4828 E:0 I:1

 1

 2

and.$b0 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r4829 E:0 I:3

 2 1

 1 1 1

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 8388608

r4833 E:0 I:1

 1

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 8388608

r4842 E:0 I:1

 1

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 8388608

r4845 E:0 I:1

 1

 1

Literal constant: 1

Type: cuda f32 Size: 1

r4831 E:0 I:6

 2

add.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4843 E:0 I:1

 2

add.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5261 E:0 I:1

 1

sub.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5462 E:0 I:2

 2

sub.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5480 E:0 I:2

 2

sub.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5647 E:0 I:1

 2

Literal constant: -1

Type: cuda f32 Size: 1

r4832 E:0 I:1

 3

 1

rcp.approx.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r4835 E:0 I:1

neg.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r4836 E:0 I:2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4838 E:0 I:2

 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r4840 E:0 I:2

 2

 1

neg.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r4844 E:0 I:1

 2

 1

neg.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r4841 E:0 I:1

 2

 3

 1

 2

 3

 2

 2

 2

 2

 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5590 E:0 I:1

 1 2

 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5591 E:0 I:1

 1 2

 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5592 E:0 I:1

 1

neg.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r4857 E:0 I:1

neg.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r4859 E:0 I:1

neg.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r4861 E:0 I:1

 3

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r5593 E:0 I:1

 1

 3

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r5594 E:0 I:1

 1

 3

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 8388608

r5595 E:0 I:1

 1

 1

 1

 1

 3

 3

 3

 2

mov.$t0 $r0, $r1

Type: cuda f32 Size: 1

r4984 E:0 I:1

 11

 3 1

setp.lo.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r5010 E:0 I:1

 1 2

Literal constant: 6

Type: cuda u32 Size: 1

r5009 E:0 I:1

 2

 1

and.$b0 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r5481 E:0 I:5

 1

and.$b0 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r5658 E:0 I:1

 1

Evaluated

Type: cuda u32 Size: 16

r5012 E:0 I:1

Literal constant: 0x7fdd70e00a00

Type: cuda ptr Size: 1

r5013 E:0 I:1

 1

 1

 1 2

Literal constant: 6364136223846793005

Type: cuda u64 Size: 1

r5023 E:0 I:6

 2

 2

 2

 2

 2

 2

 1

Literal constant: 18

Type: cuda u64 Size: 1

r5025 E:0 I:3

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r5446 E:0 I:1

 2

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r5464 E:0 I:1

 2

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r5631 E:0 I:1

 2

Literal constant: 27

Type: cuda u64 Size: 1

r5028 E:0 I:3

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r5448 E:0 I:1

 2

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r5466 E:0 I:1

 2

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r5633 E:0 I:1

 2

Literal constant: 59

Type: cuda u64 Size: 1

r5031 E:0 I:3

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r5450 E:0 I:1

 2

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r5468 E:0 I:1

 2

cvt.u32.$t2 %r3, $r2
shr.$b0 $r0, $r1, %r3

Type: cuda u64 Size: 8388608

r5635 E:0 I:1

 2

Literal constant: 31

Type: cuda i32 Size: 1

r5037 E:0 I:3

and.$b0 $r0, $r1, $r2

Type: cuda i32 Size: 8388608

r5455 E:0 I:1

 2

and.$b0 $r0, $r1, $r2

Type: cuda i32 Size: 8388608

r5473 E:0 I:1

 2

and.$b0 $r0, $r1, $r2

Type: cuda i32 Size: 8388608

r5640 E:0 I:1

 2

Literal constant: 9

Type: cuda u32 Size: 1

r5042 E:0 I:3

shr.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5459 E:0 I:1

 2

shr.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5477 E:0 I:1

 2

shr.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5644 E:0 I:1

 2

Literal constant: 1065353216

Type: cuda u32 Size: 1

r5044 E:0 I:3

or.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5460 E:0 I:1

 2

or.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5478 E:0 I:1

 2

or.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5645 E:0 I:1

 2

 1

max.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5259 E:0 I:1

 1 2

max.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5260 E:0 I:1

 2

 1

 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5263 E:0 I:2

 1

Literal constant: 8.9407e-05

Type: cuda f32 Size: 1

r5262 E:0 I:1

 2

neg.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r5268 E:0 I:1

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 8388608

r5603 E:0 I:3

 2

 3

 1

 1

xor.$b0 $r0, $r1, $r2

Type: cuda u64 Size: 8388608

r5447 E:0 I:1

 2

 1

 1 1

xor.$b0 $r0, $r1, $r2

Type: cuda u64 Size: 8388608

r5465 E:0 I:1

 2

 1

 1

 1

cvt.$t0.$t1 $r0, $r1

Type: cuda u32 Size: 8388608

r5449 E:0 I:2

shr.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5452 E:0 I:1

 1

shl.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5457 E:0 I:1

 1

cvt.$t0.$t1 $r0, $r1

Type: cuda u32 Size: 8388608

r5451 E:0 I:2

 2

mov.$b0 $r0, $r1

Type: cuda i32 Size: 8388608

r5453 E:0 I:1

or.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5458 E:0 I:1

 1

neg.$t0 $r0, $r1

Type: cuda i32 Size: 8388608

r5454 E:0 I:1

 1

mov.$b0 $r0, $r1

Type: cuda u32 Size: 8388608

r5456 E:0 I:1

 2

 2

 1

 1

mov.$b0 $r0, $r1

Type: cuda f32 Size: 8388608

r5461 E:0 I:1

 1

mov.$t0 $r0, $r1

Type: cuda f32 Size: 1

r5505 E:0 I:1

 13

 1 1

xor.$b0 $r0, $r1, $r2

Type: cuda u64 Size: 8388608

r5632 E:0 I:1

 2

 1 1

 1

cvt.$t0.$t1 $r0, $r1

Type: cuda u32 Size: 8388608

r5467 E:0 I:2

shr.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5470 E:0 I:1

 1

shl.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5475 E:0 I:1

 1

cvt.$t0.$t1 $r0, $r1

Type: cuda u32 Size: 8388608

r5469 E:0 I:2

 2

mov.$b0 $r0, $r1

Type: cuda i32 Size: 8388608

r5471 E:0 I:1

or.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5476 E:0 I:1

 1

neg.$t0 $r0, $r1

Type: cuda i32 Size: 8388608

r5472 E:0 I:1

 1

mov.$b0 $r0, $r1

Type: cuda u32 Size: 8388608

r5474 E:0 I:1

 2

 2

 1

 1

mov.$b0 $r0, $r1

Type: cuda f32 Size: 8388608

r5479 E:0 I:1

 1

mov.$t0 $r0, $r1

Type: cuda f32 Size: 1

r5506 E:0 I:1

 14

 2

selp.$b0 $r0, $r1, 0, $r2

Type: cuda f32 Size: 8388608

r5577 E:0 I:3

 2

selp.$b0 $r0, $r1, 0, $r2

Type: cuda f32 Size: 8388608

r5578 E:0 I:3

 2

selp.$b0 $r0, $r1, 0, $r2

Type: cuda f32 Size: 8388608

r5579 E:0 I:3

 2

selp.$b0 $r0, $r1, 0, $r2

Type: cuda f32 Size: 8388608

r5581 E:0 I:1

 2

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 1

r5516 E:0 I:4

 2

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 1

r5518 E:0 I:4

 2

setp.eq.$t1 $r0, $r1, $r2

Type: cuda msk Size: 1

r5519 E:0 I:1

 2

setp.eq.$t1 $r0, $r1, $r2

Type: cuda msk Size: 1

r5520 E:0 I:1

 2

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 1

r5533 E:0 I:2

 2

max.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 1

r5542 E:0 I:1

 2

Literal constant: 2

Type: cuda f32 Size: 1

r5513 E:0 I:2

 1 1

Literal constant: -1

Type: cuda f32 Size: 1

r5515 E:0 I:2

 3 3

 1

abs.$t0 $r0, $r1

Type: cuda f32 Size: 1

r5522 E:0 I:1

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 1

r5525 E:0 I:3

 3

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 1

r5526 E:0 I:1

 2

 1

abs.$t0 $r0, $r1

Type: cuda f32 Size: 1

r5523 E:0 I:1

 2 3

and.$b0 $r0, $r1, $r2

Type: cuda msk Size: 1

r5521 E:0 I:1

 1 2

 1

setp.lt.$t1 $r0, $r1, $r2

Type: cuda msk Size: 1

r5524 E:0 I:3

 1 2

 1 1

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 1

r5532 E:0 I:1

 1

div.approx.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 1

r5529 E:0 I:2

 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 1

r5536 E:0 I:3

 1

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 1

r5537 E:0 I:3

 1

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 1

r5528 E:0 I:1

 2

Literal constant: 0.785398

Type: cuda f32 Size: 1

r5527 E:0 I:1

 1

 1

sub.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 1

r5531 E:0 I:1

 2

 3

Literal constant: 1.5708

Type: cuda f32 Size: 1

r5530 E:0 I:1

 1

 2

 3

sin.approx.ftz.$t1 $r0, $r1

Type: cuda f32 Size: 1

r5534 E:0 I:1

cos.approx.ftz.$t1 $r0, $r1

Type: cuda f32 Size: 1

r5535 E:0 I:1

 2

 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 1

r5538 E:0 I:1

 1 2

 1

fma.rn.ftz.$t0 $r0, $r1, $r2, $r3

Type: cuda f32 Size: 1

r5539 E:0 I:1

 1 2

 1

 3

sub.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 1

r5541 E:0 I:1

 2

Literal constant: 1

Type: cuda f32 Size: 1

r5540 E:0 I:2

 1

 1

 1

sqrt.approx.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 1

r5543 E:0 I:2

 1

Label: "VCall: mitsuba::BSDF::sample() [call offsets]"

Evaluated

Type: cuda u64 Size: 6

r5572 E:0 I:1

Literal constant: 0x40200b600

Type: cuda ptr Size: 1

r5573 E:0 I:1

 3

Label: "VCall: mitsuba::BSDF::sample() [call data]"

Evaluated

Type: cuda u8 Size: 80

r5574 E:0 I:1

Literal constant: 0x40200b800

Type: cuda ptr Size: 1

r5575 E:0 I:1

 4

Label: "VCall: mitsuba::BSDF::sample() [out 7]"

Type: cuda f32 Size: 8388608

r5584 E:0 I:1

Label: "VCall: mitsuba::BSDF::sample() [out 8]"

Type: cuda f32 Size: 8388608

r5585 E:0 I:1

Label: "VCall: mitsuba::BSDF::sample() [out 9]"

Type: cuda f32 Size: 8388608

r5586 E:0 I:1

 2 2 2

 2 2 2

 2 2 2

 2

 2 2

 2

 3 3 3

 3 3 3

 2

 7

 2

 8

 2

 9

 3

 3

 1

 1

 1 1 1

 4 5 6

Literal constant: 3.40282e+38

Type: cuda f32 Size: 1

r5607 E:0 I:1

 10

max.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5622 E:0 I:1

 1

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5650 E:0 I:1

 1

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 8388608

r5653 E:0 I:1

 3

 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5651 E:0 I:1

 1

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 8388608

r5654 E:0 I:1

 3

max.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5623 E:0 I:2

 2

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5652 E:0 I:1

 1

selp.$t0 $r0, $r2, $r3, $r1

Type: cuda f32 Size: 8388608

r5655 E:0 I:1

 3

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5624 E:0 I:1

 1 2

 14

setp.hs.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r5629 E:0 I:4

 1

 15

 1

mul.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5625 E:0 I:1

 1 1 2

min.ftz.$t0 $r0, $r1, $r2

Type: cuda f32 Size: 8388608

r5627 E:0 I:2

 1

Literal constant: 0.95

Type: cuda f32 Size: 1

r5626 E:0 I:1

 2

setp.lt.$t1 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r5648 E:0 I:1

 2

rcp.approx.ftz.$t0 $r0, $r1

Type: cuda f32 Size: 8388608

r5649 E:0 I:3

Literal constant: 5

Type: cuda u32 Size: 1

r5628 E:0 I:1

 2

 1 1 1

not.$b0 $r0, $r1

Type: cuda msk Size: 8388608

r5656 E:0 I:1

 3

 1

 1

cvt.$t0.$t1 $r0, $r1

Type: cuda u32 Size: 8388608

r5634 E:0 I:2

shr.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5637 E:0 I:1

 1

shl.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5642 E:0 I:1

 1

cvt.$t0.$t1 $r0, $r1

Type: cuda u32 Size: 8388608

r5636 E:0 I:2

 2

mov.$b0 $r0, $r1

Type: cuda i32 Size: 8388608

r5638 E:0 I:1

or.$b0 $r0, $r1, $r2

Type: cuda u32 Size: 8388608

r5643 E:0 I:1

 1

neg.$t0 $r0, $r1

Type: cuda i32 Size: 8388608

r5639 E:0 I:1

 1

mov.$b0 $r0, $r1

Type: cuda u32 Size: 8388608

r5641 E:0 I:1

 2

 2

 1

 1

mov.$b0 $r0, $r1

Type: cuda f32 Size: 8388608

r5646 E:0 I:1

 1

 1

or.$b0 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r5657 E:0 I:1

 2 2 2 2

 2 2 2

 11 12 13

 1

 2

and.$b0 $r0, $r1, $r2

Type: cuda msk Size: 8388608

r5660 E:0 I:1

 1

 2

 16

 2

Legend

PlaceholderSpecialDirtyEvaluatedLabeledConstant

Figure 3.4: A small excerpt of the computation graph representing the (differentiable) path tracing al-

gorithm as implemented in Mitsuba 3, when rendering the simple Cornell Box scene. Each edge stores

arrays of weights with size proportional to the number of rays traced. Note that automatic graph simpli-

fications were already applied.

43

4 | Radiative Backpropagation

Relevant background: Sections 2.2, 2.4 and 2.6.

4.1 Introduction

Chapter 3 established that automatic differentiation for physically based rendering suf-
fers from fundamental scaling issues and correctness pitfalls. In this chapter, we in-
troduce radiative backpropagation, an adjoint method for differentiable rendering that
addresses these limitations. Despite operating in reverse-mode, our method does not re-
quire a transcript of intermediate steps, allowing it to scale to complex and long-running
simulations. Our key observation is that backpropagating derivatives through a render-
ing algorithm can be re-cast as the solution of a modified light transport problem involv-
ing the partial derivative of radiance with respect to the optimization objective. Impor-
tantly, this new problem can be solved separately from the original rendering problem,
i.e. without retaining any intermediate state. It also naturally permits usage of sepa-
rate specialized sampling strategies for the primal- (forward rendering of the scene) and
adjoint problems (estimating gradients w.r.t. scene parameters).

Our algorithm admits a vastly more efficient implementation, where automatic dif-
ferentiation is applied selectively to produce “derivative shaders”. Chapter 8 details these
systems-related aspects and demonstrates speedups of up to 1000× over the AD-based
method of Chapter 3.

4.2 Radiative transfer

Before delving into the specifics of our method, we briefly recall the relevant radia-
tive transfer equations of Section 2.2.2 and their differential formulations. The former
roughly follows the notation of Veach [25], and the latter is a subset of the framework
proposed by Zhang et al. [107], which we include here for completeness. To keep the
discussion simple, we initially focus on a simplified problem without volumetric effects,
and we furthermore ignore derivatives that arise due to parameter-dependent silhouette
boundaries. The ideas underlying radiative backpropagation are orthogonal to these as-
pects, and we refer the reader to Zhang et al. [107] for a full definition of the differential
quantities with all terms. Radiative backpropagation is generalized to the volumetric
setting in Section 4.3.5.

44

Chapter 4. Radiative Backpropagation

Initial Ours (unbiased) Autodi�-basedOurs (biased I+II)

Target 0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7Method
Mitsuba 2
Ours
Ours (biased II)
Ours (biased I)
Ours (biased I+II)

Er
ro

r
Er

ro
r

Time (s)Time (s)

Autodi�-based

Figure 4.1: Our method is able to reconstruct the texture of a globe seen through a bell jar in this inte-

rior scene with complex materials and interreflection. Starting from a different initialization (Mars), it

attempts to match a reference rendering by differentiating the 𝐿2 image distance w.r.t. scene parameters

with respect. The plot on the right shows convergence over time for prior work [14] and multiple variants

of radiative backpropagation. Our method removes the severe overheads of differentiation compared to

ordinary rendering, and we demonstrate speedups of up to ∼1000× compared to prior work.

Rendering algorithms estimate sets of measurements 𝐼1, . . . , 𝐼𝑛 corresponding to pix-
els in an image. These measurements are defined as inner products on ray space A × 𝑆2

involving the incident radiance 𝐿𝑖 and the importance function𝑊𝑘 of pixels 𝑘 = 1, . . . , 𝑛:

𝐼𝑘 = ⟨𝑊𝑘 , 𝐿𝑖⟩ (Measurement)

=
∫

A

∫
𝑆2
𝑊𝑘 (x,𝝎) 𝐿𝑖 (x,𝝎) d𝝎⊥ dx.

where d𝝎⊥ indicates integration with respect to projected solid angle at x. Radiance
is invariant along unoccluded rays, relating 𝐿𝑖 to the outgoing radiance at the nearest
surface r(x,𝝎) visible along the ray (x,𝝎):

𝐿𝑖 (x,𝝎) = 𝐿𝑜 (r(x,𝝎),−𝝎). (Transport)

At surfaces, radiance satisfies an energy balance condition relating sources and sinks,
specifically emission 𝐿𝑒 (x,𝝎), and absorption or reflection of incident illumination mod-
eled via 𝑓𝑠 (x,𝝎,𝝎′), the BSDF of the surface at x:

𝐿𝑜 (x,𝝎) = 𝐿𝑒 (x,𝝎) +
∫
𝑆2
𝐿𝑖 (x,𝝎′) 𝑓𝑠 (x,𝝎,𝝎′) d𝝎′⊥. (Scattering)

Monte Carlo rendering techniques such as path tracing (Section 2.2.4) recursively sam-
ple the above equations using sophisticated importance sampling strategies to obtain
unbiased estimates of the measurements 𝐼1, . . . , 𝐼𝑛 .

45

Chapter 4. Radiative Backpropagation

4.3 Method

4.3.1 Differential radiative transfer

We now turn to differential radiative transfer by differentiating the left and right hand
sides of the preceding three equations with respect to all scene parameters𝜽 = (𝜃1, . . . , 𝜃𝑚),
resulting in vectorial equations. For notational convenience, we define 𝜕𝜽 B 𝜕/𝜕𝜽 and as-
sume component-wise multiplication of vector quantities. The resulting equations will
relate differential incident, outgoing, and emitted radiance 𝜕𝜽𝐿𝑖 , 𝜕𝜽𝐿𝑜 , and 𝜕𝜽𝐿𝑒 . Differen-
tial radiance in many ways resembles “ordinary” radiance, and we will simply think of
it as another type of radiation that can be transported and scattered.

To start, a differential measurement of pixel 𝑘 involves a ray-space inner product
involving differential incident radiance 𝜕𝜽𝐿𝑖 and importance𝑊𝑘 :

𝜕𝜽 𝐼𝑘 =
∫

A

∫
𝑆2
𝑊𝑘 (x,𝝎)𝜕𝜽𝐿𝑖 (x,𝝎) d𝝎⊥ dx. (Differential measurement)

Here, we have assumed a static sensor1, hence 𝜕𝜽𝑊𝑘 = 0. Differentiating the transport
equation yields no surprises: differential radiance is transported in the same manner as
normal radiance:

𝜕𝜽𝐿𝑖 (x,𝝎) = 𝜕𝜽𝐿𝑜 (r(x,𝝎),−𝝎) . (Differential transport)

The derivative of the scattering equation is more interesting:

𝜕𝜽𝐿𝑜 (x,𝝎) = 𝜕𝜽𝐿𝑒 (x,𝝎)︸ ︷︷ ︸
Term 1

(Differential scattering)

+
∫
𝑆2

[
𝜕𝜽𝐿𝑖 (x,𝝎′) 𝑓𝑠 (x,𝝎,𝝎′)︸ ︷︷ ︸

Term 2

+𝐿𝑖 (x,𝝎′) 𝜕𝜽 𝑓𝑠 (x,𝝎,𝝎′)︸ ︷︷ ︸
Term 3

]
d𝝎′⊥.

The above can be interpreted as another kind of energy balance equation. In particular,

• Term1. Differential radiance is “emitted” by light sources whose brightness changes
when perturbing the scene parameters 𝜽 .

• Term 2. Differential radiance “scatters” in the same way as normal radiance, i.e.
according to the BSDF of the underlying surface.

1Compatibility of our approach with existing methods which compute visibility-related gradients is dis-
cussed in Section 4.5.

46

Chapter 4. Radiative Backpropagation

• Term 3. Differential radiance is additionally “emitted” when the material at x
changes as a function of the scene parameters.

In the following, we will develop tools to sample these equations in reverse mode.

4.3.2 Optimization using differential transport

Applications of differentiable rendering to optimization problems (e.g. inverse rendering)
require an objective function 𝑔 : Y → R that measures the quality of tentative solutions.
This objective could be a simple pixel-wise 𝐿1 or 𝐿2 error or a function with a more
complex dependence, such as a Wasserstein metric or a convolutional neural network.
Given 𝑔, we seek to minimize the composition 𝑔(𝑓 (𝜽)) using an iterative gradient-based
optimization technique, bearing in mind that evaluations are necessarily noisy due to
the underlying Monte Carlo integration.

It is interesting to note that gradients are a major asset in this context: Jamieson
et al. [137] showed that derivative free optimization (DFO) methods can never achieve
an optimization error better than Ω(1/√𝑙) when optimizing noisy objectives, where 𝑙 is
the iteration count, and this even applies to methods that estimate derivatives using
finite differences. In contrast, the error of gradient-based methods always decreases
proportionally to Θ(1/𝑙) when the function is strongly convex2.

The first issue with this approach was noted by Gkioulekas et al. [99] and can be
observed after rewriting the gradient as a product of the Jacobians via the chain rule:
Since this occurs simultaneously using the same samples, the resulting random variables
are correlated, meaning that the identity E[𝑋𝑌] = E[𝑋] E[𝑌] no longer holds, and the
resulting gradients are thus biased. The second problem is that the transcript of 𝑔 ◦ 𝑓 is
even longer than the already problematic rendering step, especially when the objective
function is nontrivial. In contrast to AD-based gradient computation, our approach splits
differentiation into three steps: rendering, differentiation of the objective, and radiative
backpropagation. In pseudocode:
2A standard assumption made to analyze the asymptotic behavior of such methods.

47

Chapter 4. Radiative Backpropagation

Gradient of objective
w.r.t. each pixel

Primal rendering

Objective function

Reference image

Scene parameters

Backpropagation

Rendering

Parameter gradients

Adjoint rendering

Radiative backpropagation

Figure 4.2: Our method efficiently computes gradients of an arbitrary objective function 𝑔(𝑓 (𝜽)) w.r.t.
scene parameters 𝜽 . At each iteration, it performs a fast primal (i.e. non-differentiable) rendering step

producing an image y = 𝑓 (𝜽). The second step differentiates the objective function to compute an

“adjoint rendering” 𝜹y that expresses the sensitivity of individual image pixels w.r.t. the optimization

task. Radiative backpropagation is the final step and the main contribution of this chapter. It consists of

a physical simulation, in which adjoint radiance 𝜹y is emitted by the sensor, scattered by the scene, and

eventually received by objects with differentiable parameters. Its output are parameter gradients 𝜹𝜽 .

48

Chapter 4. Radiative Backpropagation

def grad(𝜽):

1. Ordinary rendering (no AD)

y = f(𝜽)

2. Differentiate objective at y (manually or w/ AD)

𝜹y = J𝑇𝑔 (y)
Estimate 𝜹𝜽 = J𝑇

𝑓
𝜹y using radiative backpropagation

return radiative_backprop(𝜽, 𝜹y)

We refer to 𝜹y ∈ R𝑛 as the adjoint rendering3. It encodes the sensitivity of pixels with
respect to the objective, i.e. how the rendered image should change to optimally improve
the objective locally. The algorithm’s main steps are illustrated in Figure 4.2.

4.3.3 Adjoint radiance

We now turn to the stochastic evaluation of J𝑇
𝑓
𝜹y. Recall that the rows of the Jacobian

J𝑓 are the parametric derivatives of pixel measurements, i.e.

J𝑇𝑓 =
[
𝜕𝜽 𝐼0, . . . , 𝜕𝜽 𝐼𝑛

]
.

Substituting the differential measurement equation yields

J𝑇𝑓 𝜹y =
𝑛∑︁

𝑘=1
𝜹y,𝑘 𝜕𝜽 𝐼𝑘

=
∫

A

∫
𝑆2

[
𝑛∑︁

𝑘=1
𝜹y,𝑘𝑊𝑘 (x,𝝎)

]
︸ ︷︷ ︸

C𝐴𝑒 (x,𝝎)

𝜕𝜽𝐿𝑖 (x,𝝎) d𝝎⊥ dx,

where we have defined the emitted adjoint radiance 𝐴𝑒 (x,𝝎) and 𝜹y,𝑘 refers to pixel 𝑘 of
𝜹y. With this substitution, the desired gradient J𝑇𝑓 𝜹y turns into an inner product on ray
space:

J𝑇𝑓 𝜹y = ⟨𝐴𝑒, 𝜕𝜽𝐿𝑖⟩.
We think of 𝐴𝑒 as an emitted quantity—for instance, in the case of a pinhole camera, it
can be interpreted as a textured “spot light” that projects the adjoint rendering into the
scene. Whereas a primal renderer might, e.g. estimate an inner product of emitted impor-
tance and incident radiance, radiative backpropagation replaces these with differential
quantities: emitted adjoint radiance, and the incident differential radiance.
3Unless noted otherwise, we use the qualifier “adjoint” in the AD sense throughout this chapter, i.e. indi-
cating sensitivity with regards to an optimization objective. The terminological overlap with bidirectional
light transport techniques is unfortunate.

49

Chapter 4. Radiative Backpropagation

4.3.4 Operator formulation

The previous expression is reminiscent of the starting point of the operator formulation
developed by Arvo [138] and Veach [25]. We wish to follow a similar approach here and
begin by defining an effective emission term Q(x,𝝎) that includes terms 1 and 3 of the
differential scattering equation from Section 4.3.1. Recall that the latter is nonzero when
the scattered radiance at x changes as a function of the material parameters.

Q(x,𝝎) B 𝜕𝜽𝐿𝑒 (x,𝝎) +
∫
𝑆2
𝐿𝑖 (x,𝝎′) 𝜕𝜽 𝑓𝑠 (x,𝝎,𝝎′) d𝝎′⊥, (4.1)

We then define a scattering operator K , and a propagation operator G :

(Kℎ) (x,𝝎) B
∫
𝑆2
ℎ(x,𝝎′) 𝑓𝑠 (x,𝝎,𝝎′) d𝝎′⊥,

(Gℎ) (x,𝝎) B ℎ(r(x,𝝎),−𝝎),

reducing the differential transport and scattering equations to

𝜕𝜽𝐿𝑖 = G𝜕𝜽𝐿𝑜 , and 𝜕𝜽𝐿𝑜 = Q + K 𝜕𝜽𝐿𝑖 .

Differential radiance scatters and propagates like “ordinary” radiance, hence K and G are
identical to Veach’s operators, allowing us to immediately state the solution of outgoing
differential radiance:

𝜕𝜽𝐿𝑜 = Q + KG 𝜕𝜽𝐿𝑜

= (𝐼 − KG)−1︸ ︷︷ ︸
CS

Q

=
∞∑︁
𝑖=0

(KG)𝑖Q

via the solution operator S given in terms of a Neumann series expansion of K and G .
Veach also showed that G , K , and GS are self-adjoint4 linear operators when the scene
satisfies elementary physical constraints—in particular, energy-conserving and recipro-
cal BSDFs. Self-adjoint operators O have the property that ⟨O 𝑣1, 𝑣2⟩ = ⟨𝑣1,O 𝑣2⟩, mean-
ing that

J𝑇𝜹y = ⟨𝐴𝑒, 𝜕𝜽𝐿𝑖⟩ = ⟨𝐴𝑒,GSQ⟩ = ⟨GS𝐴𝑒,Q⟩ .

This equation encapsulates the key idea of radiative backpropagation. It states that in-
stead of scattering and propagating differential radiance we can also start “from the other
4In the sense of functional analysis.

50

Chapter 4. Radiative Backpropagation

side” and scatter and propagate adjoint radiance instead. This is a vastly easier problem:
𝐴𝑒 is scalar-valued, while Q is a vectorial function whose dimension matches that of the
parameter space Θ (i.e. potentially millions).

4.3.5 Volumetric transport

To analyze the volumetric case, we import the operator formulation of Jakob [53]. Its
generalized scattering operator is given by

(K̄ℎ) (x,𝝎) B



∫
𝑆2
ℎ(x,𝝎′) 𝑓𝑠 (x,𝝎,𝝎′) d𝝎′⊥, x ∈ A

𝜎𝑠 (x)
∫
𝑆2
ℎ(x,𝝎′) 𝑓𝑝 (x,−𝝎,𝝎′) d𝝎′, x ∉ A

which turns incident radiance into either outgoing radiance on surfaces, and into outgo-
ing radiance per unit length in volumes. Here, 𝜎𝑠 is the medium’s scattering coefficient
and 𝑓𝑝 is the phase function5. The propagation operator reads

(Ḡℎ) (x,𝝎) B
∫ r(x,𝝎)

x
T(x, x′) ℎ(x′,−𝝎) dx′ + T(x, r(x,𝝎)) ℎ(r(x,𝝎),−𝝎),

and returns incident radiance due to both outgoing surface radiance and outgoing ra-
diance per unit length in volumes. The function T is the volumetric transmittance
defined as

T(a, b) = 𝑒−
∫ b
a 𝜎𝑡 (x) dx,

and references the extinction coefficient 𝜎𝑡 . Using the above definitions, the generalized
equilibrium equation6 reads

𝐿𝑖 = Ḡ (K̄ 𝐿𝑖 + 𝐿𝑒).
5Note that its incident argument follows a different sign convention than the BSDF.
6The order of operators is reversed compared to the surface case. Details can be found in Jakob’s Ph.D. the-
sis [53], page 57.

51

Chapter 4. Radiative Backpropagation

Differentiating the operators with respect to scene parameters via the product rule yields
the following sum of terms:

𝜕𝜽 (K̄ℎ) (x,𝝎) =




∫
𝑆2

[
𝜕𝜽ℎ(x,𝝎′) 𝑓𝑠 (x,𝝎,𝝎′)

+ℎ(x,𝝎′) 𝜕𝜽 𝑓𝑠 (x,𝝎,𝝎′)] d𝝎′⊥, x ∈ A∫
𝑆2

[
𝜕𝜽ℎ(x,𝝎′) 𝜎𝑠 (x) 𝑓𝑝 (x,−𝝎,𝝎′)

+ℎ(x,𝝎′) 𝜕𝜽𝜎𝑠 (x) 𝑓𝑝 (x,−𝝎,𝝎′)
+ℎ(x,𝝎′) 𝜎𝑠 (x) 𝜕𝜽 𝑓𝑝 (x,−𝝎,𝝎′)] d𝝎′, x ∉ A

and the derivative of the propagation operator is given by

𝜕𝜽 (Ḡℎ) (x,𝝎) =
∫ r(x,𝝎)

x

[
𝜕𝜽T(x, x′) ℎ(x′,−𝝎)+T(x, x′) 𝜕𝜽ℎ(x′,−𝝎)

]
dx′

+ 𝜕𝜽T(x, r(x,𝝎)) ℎ(r(x,𝝎),−𝝎)
+ T(x, r(x,𝝎)) 𝜕𝜽ℎ(r(x,𝝎),−𝝎).

We observe that both equations contain certain terms with the factor 𝜕𝜽ℎ, and that the
removal of all other terms would yield expressions that match ordinary scattering and
propagation operators applied to the function 𝜕𝜽ℎ. These other terms only depend on
primal quantities (in particular, ℎ) and derivatives of material properties (e.g. 𝜕𝜽𝜎𝑠 (x)),
and the differential form of the operators can thus be cast into the form

𝜕𝜽 K̄ℎ = K̄ 𝜕𝜽ℎ + Q̄ 1ℎ

𝜕𝜽 Ḡℎ = Ḡ𝜕𝜽ℎ + Q̄ 2ℎ

where the operators Q̄ 1 and Q̄ 2 model differential radiance that is emitted because optical
properties depend on scene parameters 𝜽 . More specifically, Q̄ 1 describes differential
emission due to perturbations in BSDFs, phase functions, and the scattering coefficient,
and Q̄ 2 contains differential emission due to perturbations in transmission along ray
segments:

(Q̄ 1ℎ) (x,𝝎) =




∫
𝑆2
ℎ(x,𝝎′) 𝜕𝜽 𝑓𝑠 (x,𝝎,𝝎′) d𝝎′⊥, x ∈ A∫

𝑆2

[
ℎ(x,𝝎′) 𝜕𝜽𝜎𝑠 (x) 𝑓𝑝 (x,−𝝎,𝝎′)

+ℎ(x,𝝎′) 𝜎𝑠 (x) 𝜕𝜽 𝑓𝑝 (x,−𝝎,𝝎′)] d𝝎′, x ∉ A

(Q̄ 2ℎ) (x,𝝎) =
∫ r(x,𝝎)

x
𝜕𝜽T(x, x′) ℎ(x′,−𝝎) dx′ + 𝜕𝜽T(x, r(x,𝝎)) ℎ(r(x,𝝎),−𝝎).

52

Chapter 4. Radiative Backpropagation

Both terms can be sampled using standard volumetric path tracing techniques, although
we will show in Chapter 5 that a dedicated sampling technique is needed to estimate
unbiased and low-variance in-scattering gradients. We can now derive the differential
equilibrium equation:

𝜕𝜽𝐿𝑖 = 𝜕𝜽 Ḡ (K̄ 𝐿𝑖 + 𝐿𝑒)
= Ḡ𝜕𝜽 (K̄ 𝐿𝑖 + 𝐿𝑒) + Q̄ 2(K̄ 𝐿𝑖 + 𝐿𝑒)
= Ḡ (K̄ 𝜕𝜽𝐿𝑖 + 𝜕𝜽𝐿𝑒 + Q̄ 1𝐿𝑖) + Q̄ 2(K̄ 𝐿𝑖 + 𝐿𝑒)
= ḠK̄ 𝜕𝜽𝐿𝑖 + Ḡ𝜕𝜽𝐿𝑒 + ḠQ̄ 1𝐿𝑖 + Q̄ 2(K̄ 𝐿𝑖 + 𝐿𝑒)︸ ︷︷ ︸

CQ̄
= (𝐼 − ḠK̄)−1︸ ︷︷ ︸

= S̄

Q̄.

where S̄ is the generalized solution operator and Q̄ is an effective emission term that
accounts for all sources of emitted differential radiance. As before, differential radiative
transfer can thus be understood as the solution to an ordinary transport problem with a
modified emission term. The volumetric form of radiative backpropagation then exploits
the self-adjoint nature of S̄ to efficiently compute the following inner product:

J𝑇𝜹y = ⟨𝐴𝑒, 𝜕𝜽𝐿𝑖⟩ = ⟨𝐴𝑒, S̄Q̄⟩ = ⟨S̄𝐴𝑒, Q̄⟩.

4.3.6 Sampling strategies for differential rendering

To complete the symmetry, we can finally define analogous incident and outgoing vari-
ants of adjoint radiance satisfying

𝐴𝑖 = G𝐴𝑜 , and 𝐴𝑜 = 𝐴𝑒 + K𝐴𝑖

In the next section, we present a simple path tracing-style integrator that samples adjoint
incident radiance 𝐴𝑖 at surface locations to compute its inner product ⟨𝐴𝑖,Q⟩ with the
effective differential emission. At specific surface positions, the Q term is extremely
sparse7, admitting a highly efficient integration procedure.

A great variety of alternative sampling schemes are conceivable: for instance, certain
scene parameters may have a significant effect on the scene’s local radiance distribution
(corresponding to very large component values in the effective emission term Q). Scene
7On a surface with a textured diffuse BSDF, it will e.g. be zero except for components corresponding to
texels that are interpolated during BSDF evaluations at x.

53

Chapter 4. Radiative Backpropagation

locations affected by this could be sampled in a more targeted fashion to create an ad-
ditional connection strategy akin to next event estimation in the context of path tracing.
The benefits of such a connection strategy will be marginal if most of the generated sam-
ples cannot be connected to the adjoint subpath sampled from the camera end (e.g. due
to occlusion). Analogous to bidirectional path tracing [49], it may be helpful to scatter
and transport these samples multiple times through the scene to increase the probability
of a successful connection, creating a family of bidirectional connection strategies.

One of the main contributions of our work is that it casts the problem of reverse-mode
differentiable rendering into familiar light transport terms, enabling the application of a
large toolbox of algorithms and sampling strategies developed in the last decades.

4.3.7 Radiative backpropagation path tracing

Listings 2 and 3 provide the pseudocode of a simple path tracing-style variant of radiative
backpropagation. Note that all scene elements (BSDFs, emitters) in these listings are
assumed to have an implicit dependence on the scene parameters 𝜽 . For simplicity,
we omit a number of optimizations that are standard in path tracers, and which are
similarly straightforward to implement in our method—in particular: Russian roulette,
direct illumination sampling strategies for emitters, and multiple importance sampling
to combine BSDF and emitter sampling strategies. Our implementation does use these
optimizations.

One interesting optimization opportunity that we currently do not exploit is that
many pixels may be associated with a relatively small amount of adjoint radiance (i.e.
𝐴𝑒 (x,𝝎) ≈ 0), in which case rays (x,𝝎) should be sampled directly from 𝐴𝑒 instead of
the sensor’s importance function. Two lines in Listing 3 of the form:
grad += adjoint([[𝑞(z)]], 𝜹)

deserve further explanation. This syntax indicates an evaluation of the adjoint of 𝑞: we
wish to propagate the gradient 𝜹 from the outputs of the function 𝑞 evaluated at (𝜽 , z)
to its differentiable parameters 𝜽 ∈ Θ by evaluating J𝑇𝑞 (𝜽 , z) 𝜹 . The function adjoint

then returns the derivative with respect to the scene parameters, i.e. a vector of size
dim(Θ). Note that adjoints of typical components of rendering systems yield extremely

sparse gradient vectors: for instance, evaluations of a textured BSDF will only depend on
a few parameters that correspond to nearby texels. Adding million-dimensional vectors
with only a few nonzero entries at every interaction would be very wasteful, hence it is
crucial that adjoint() exploits the underlying sparsity pattern. Chapter 8 discusses our
implementation of this important operation.

54

Chapter 4. Radiative Backpropagation

def radiative_backprop(𝜽, 𝜹y):

Initialize parameter gradient(s) to zero

𝜹𝜽 = 0

for _ in range(num_samples):

Importance sample a ray from the sensor

x, 𝝎, weight = sensor.sample_ray()

Evaluate the adjoint emitted radiance

weight *= 𝐴𝑒 (𝜹y, x,𝝎) / num_samples

Propagate adjoint radiance into the scene

𝜹𝜽 += radiative_backprop_sample(𝜽, x, 𝝎, weight)

Finished, return gradients

return 𝜹𝜽

Listing 2: Radiative backpropagation takes scene parameters 𝜽 and an adjoint rendering 𝜹y as input. It

samples a large set of camera rays and propagates the associated adjoint radiance 𝐴𝑒 (depending on 𝜹𝑦)

into the scene.

def radiative_backprop_sample(𝜽, x, 𝝎, weight):

Find an intersection with the scene geometry

x′ = r(x,𝝎)
Backpropagate to parameters of emitter, if any

𝜹𝜽 = adjoint([[𝐿𝑒 (x′,−𝝎)]], weight)

Sample a ray from the BSDF

𝝎′, bsdf_value, bsdf_pdf = sample 𝑓𝑠 (x′,−𝝎, ·)
Backpropagate to parameters of BSDF, if any

𝜹𝜽 += adjoint([[𝑓𝑠 (x′,−𝝎,𝝎′)]], weight * 𝐿𝑖 (x,𝝎′) / bsdf_pdf)

Recurse

return 𝜹𝜽 + radiative_backprop_sample(

𝜽, x′, 𝝎′, weight * bsdf_value / bsdf_pdf)

Listing 3: Simplified pseudocode of the propagation operation for surfaces. The two adjoint() opera-

tions correspond to the two terms of the effective differential emission Q and propagate adjoint radiance

to parameters of the emitters and material models (see Section 4.3.7 for details on their semantics).

55

Chapter 4. Radiative Backpropagation

4.3.8 Worse is better? Acceleration using biased gradients.

The previous subsection introduced an unbiased algorithm for estimating parametric
derivatives using an optical analog of reverse-mode propagation.

Quadratic cost. One potential stumbling block is that the effective emission term Q
contains the primal incident radiance𝐿𝑖 . In the unbiased algorithm, samplingQ therefore
involves a recursive invocation of a classical path tracer. We perform this recursive esti-
mate at every interaction with differentiable parameters, which can be costly (quadratic
complexity) when sampling long light paths with many interactions. The same issue
was also reported by Zhang et al. [107] in the context of forward-mode differentiation.
Interactions with objects whose properties are not being differentiated do not trigger
any additional computation compared to a standard path tracer.

Unbiased solutions. When the scene involves very long light paths and many differ-
entiable objects, it might therefore be preferable to precompute a data structure that en-
ables cheap approximate queries of 𝐿𝑖 . For instance, a path guiding technique [139] could
be used to accelerate rendering in the primal phase. The resulting spatio-directional tree
storing an interpolant of 𝐿𝑖 could subsequently be used to perform radiance queries in
the adjoint phase.

However, the best solution is likely the path replay backpropagation algorithm of
Vicini et al. [21], which builds on radiative backpropagation. By inserting an additional
forward rendering pass before the adjoint, storing the resulting per-ray radiance, and
replaying the same paths in the adjoint phase, the 𝐿𝑖 term can be recomputed for each
path suffix at minimal cost and in linear time. The algorithm is described in more detail
in Section 5.2.2.

Biased solutions. We now turn to a counter-intuitive finding—that a naïve formu-
lation with biased gradients could be preferable! We propose two approximations: the
first replaces the effective emission

Q(x,𝝎) = 𝜕𝜽𝐿𝑒 (x,𝝎) +
∫
𝑆2
𝐿𝑖 (x,𝝎′) 𝜕𝜽 𝑓𝑠 (x,𝝎,𝝎′) d𝝎′⊥,

by a simplified expression

Qapprox(x,𝝎) B 𝜕𝜽𝐿𝑒 (x,𝝎) +
∫
𝑆2
𝜕𝜽 𝑓𝑠 (x,𝝎,𝝎′) d𝝎′⊥,

56

Chapter 4. Radiative Backpropagation

where we have substituted the primal radiance term 𝐿𝑖 with the value 1. In this case, gra-
dients of individual material parameters often record the correct sign (namely, whether
the parameter should increase or decrease), but their magnitude will generally be in-
correct8. This change was originally motivated from an efficiency perspective: using
Qapprox, radiative backpropagation no longer requires recursive invocations of the primal
integrator, and the quadratic time complexity thus becomes linear. This is also slightly
cheaper than path replay backpropagation, since no additional forward pass is needed.
Surprisingly, we found in our experiments that biased gradients are not only faster to
compute, but that they can paradoxically lead to improved convergence per iteration
even when accounting for their different overall scale.

To try to understand potential reasons for this effect, we refer to a study of sign-based
gradient descent techniques by Balles and Hennig [140]. Comparing SGD to stochastic
sign descent, which only uses the sign of computed gradients, the authors report: “On the
well-conditioned problem, gradient descent vastly outperforms the sign-based method
in the noise-free case, but the difference is evened out when noise is added.” In our
case, Qapprox removes a significant source of variance in the radiative backpropagation
procedure, which we believe to be responsible for this counter-intuitive improvement.
In the remainder of this chapter, results using this simplification are labeled Biased (I).

Our second approximation builds on the observation that the adjoint phase computes
many quantities found in normal path tracers: samples from the BSDF and direct illu-
mination strategies, MIS weights, etc. At a negligible additional cost, we can therefore
render an image of the scene while propagating gradients. This suggests the following
iterative scheme with a joint primal and adjoint phase:

1 y = f(𝜽)

2 while not converged:

3 𝜹y = J𝑔 y

4 # Joint primal and adjoint phase

5 y, 𝜹𝜽 = radiative_backprop(𝜽, 𝜹y)

6 # .. gradient step ..

The above iteration now contains an intentional “off-by-1 error”: iteration 𝑖 propagates
the adjoint rendering from iteration 𝑖 − 1 through the Jacobian of iteration 𝑖 .

𝜹 (𝑖)
𝜽 = J𝑇𝑓

(
𝜽 (𝑖)) 𝜹 (𝑖−1)

y (4.2)

8The original article claimed that the correct sign is always preserved, which is not correct in general, see
[21, Section 3.2].

57

Chapter 4. Radiative Backpropagation

which can be a good approximation if the Jacobian changes slowly from iteration to iter-
ation. In the context of neural networks, this optimization is known as pipelining [141].
In the remainder of this chapter, results using pipelining are labeled Biased (II), and re-
sults that also use Qapprox are labeled Biased (I + II).

Discussion. The surprisingly good performance of the biased variants described above
elicits new questions: where exactly does the balance between bias and variance lie in
the context of Monte Carlo-based inverse problems? Is this tradeoff highly dependent
on the scene, or can general results be derived? Optimization procedures are highly
flexible and could be designed to make use of biased, but cheap gradients in early it-
erations, progressively switching to unbiased, but costlier estimates in the final stages
of convergence. These modifications could also be leveraged in future work as a tool
against suboptimal local minima.

4.4 Evaluation

We now verify the correctness of our method and apply it to several inverse rendering
settings. We compare to the automatic differentiation-based method of Chapter 3, as
implemented in Mitsuba 2, which will be presented in Chapter 7.

4.4.1 Validation

To test the correctness of the computed gradients, we selected several simple cases (dif-
fuse RGB coefficients, heterogeneous medium density, diffuse texture), and compare the
gradients of these parameters with respect to the loss generated by our method, Mit-
suba 2’s AD backend, as well as finite differences. We generally find good agreement
with a small amount of residual noise, as shown in Figure 4.3.

4.4.2 Performance

To quantify the effect of approximate gradients (“biased I”) and pipelining (“biased II”)
optimizations, we measure the runtime of the primal, adjoint or combined primal / ad-
joint phases in three types of scenes. The breakdown is plotted in Figure 4.4. Given
a scene where all interactions involve differentiable parameters, approximate gradients
will help most since they eliminate a component of the runtime that is quadratic in path

58

Chapter 4. Radiative Backpropagation
(a

)

Le� wall Right wall Floor Ceiling Back wall Short box Tall box
Scene parameter

−0.025

−0.020

−0.015

−0.010

−0.005

0.000
Gr

ad
ie

nt
va

lu
e

Estimators
Autodi� Finite di�erences Ours

(b
)

Density grid entries (3 × 3 × 3)
−0.003

−0.002

−0.001

0.000

Gr
ad

ie
nt

va
lu

e

(c
)

Scene preview Autodi� Ours

−2

0

2

×10−8

Figure 4.3: Validation of gradients comparing radiative backpropagation to Mitsuba 2’s automatic dif-

ferentiation mode, and finite differences when practical. We plot the partial derivative of the loss w.r.t.

each parameter. (a) Gradients of the RGB colors of objects in the Cornell box sceme. (b) Derivatives with
respect to extinction in a 3 × 3 × 3 heterogeneous volume lit by an environment map. (c) Gradients with
respect to the diffuse albedo texture of the wooden floor in the Staircase scene. In all cases, we find close

agreement.

59

Chapter 4. Radiative Backpropagation

length. On the other hand, scenes with costly primal rendering phases may benefit most
from pipelining.

More extensive performance evaluation is postponed to Chapter 8, where we expand
on important aspects of the implementation.

Ours Ours
(biased II)

Ours
(biased I)

Ours
(biased I+II)

0.0

0.2

0.4

0.6

0.8

M
ed

ia
n

tim
e

(s)
/i

te
ra

tio
n

(a) Cornell box (all materials

differentiable).

Ours Ours
(biased II)

Ours
(biased I)

Ours
(biased I+II)

0.00

0.25

0.50

0.75

1.00

1.25

(b) Figure 4.1 scene, optimizing

the globe only.

Ours Ours
(biased II)

Ours
(biased I)

Ours
(biased I+II)

0

1

2

3

4
Adjoint
Primal
Combined

(c) Smoke optimization

application of Figure 4.7.

Figure 4.4: We break down the running time of radiative backpropagation into primal and adjoint phases.

Using biased gradients (“biased I”) drastically reduces the cost of the adjoint phase when many differ-

entiable objects are present in the scene (a & c), while pipelining (“biased II”) combines the primal and

adjoint phases into a single step (b).

4.4.3 Texture optimization

The following experiments focus on the solution of inverse problems using gradient-
based optimization. We present results for unbiased radiative backpropagation and the
two approximations of Section 4.3.8: biased gradients (“biased I”), pipelining (“biased
II”), and both (“biased I + II”). As before, the main focus of our work is on efficient
differentiation rather than solving specific optimization problems. Additional techniques
such as multi-resolution, multi-view and hyper-parameter adjustments are orthogonal
to our method and could be used to further improve convergence.

Figure 4.1 showcases the reconstruction of the texture of a globe encased in a curved
sheet glass modeled using two interfaces. This scene involves fine detail, and the under-
lying simulation accounts for paths with up to 24 scattering events including specular-
diffuse-specular interreflection. In such a setting where high resolution and sample
count are both required, the AD-based approach of Mitsuba 2 rapidly exhausts the avail-
able GPU memory. As a consequence, rendering and differentiation must be split in
multiple smaller passes, which negatively impacts the overall running time.

We use a simple 𝐿2 objective function, adding a total variations regularizer to pro-
mote smoothness of the texture. Note that any differentiable loss can be used in combi-
nation with radiative backpropagation, including more complex ones built from convo-

60

Chapter 4. Radiative Backpropagation

lutional neural networks. We render each iteration at a resolution of 1280 × 720 pixels
and double the sample count every 40 iterations starting at 4 samples per pixel. Fig-
ure 4.5 compares the convergence of all methods, both with respect to iteration count
and runtime. The optimized texture is displayed at equal time, and corresponding ren-
derings are shown in Figure 4.1. In principle, there should be no major difference in
convergence per iteration when comparing gradients that are obtained using different
techniques. Surprisingly, we observe that biased gradients significantly improve con-
vergence although they are clearly “less correct”. We believe that the primal radiance
estimates performed during our method’s adjoint phase introduce large amounts of vari-
ance into gradient estimates that impede convergence. Primal radiance estimates are also
implicitly used when a complete simulation is differentiated using AD, as is the case in
the current implementation of differentiable rendering in Mitsuba 2. By removing this
source of variance, faster progress can be achieved.

4.4.4 Volume optimization

Next, we carry out two inverse volume rendering optimizations. These experiments
were originally designed by Delio Vicini to evaluate the differentiable rendering features
of Mitsuba 2 [14], and we reproduce them here for comparison. The former optimizes
the spatially-varying albedo of a homogeneous volume to match the appearance of a
specified texture, see Figure 4.6. This is useful in the context of 3D printing, where the
scattering of the material leads to blurring and a loss of contrast. Optimization can be
used to determine which color should be used at each point of the medium to maximize
contrast and fidelity. This problem was studied in depth in previous work [142, 143], and
we merely use it here as an illustrative example.

The second problem reconstructs density values 𝜎𝑡 of a high-resolution smoke plume
from an image of the volume itself, shown in Figure 4.7. Inverting such complex trans-
port effects would be extremely challenging without differentiable rendering.

In both cases, the AD-based baseline must maintain the transcript of the entire volu-
metric transport simulation before being able to perform a reverse-mode traversal. This
transcript becomes staggeringly large for any non-trivial volume resolution due to a
long sequence of trilinear lookups. Despite being rendered at 256× 256 resolution, these
examples exhaust GPU memory with as few as 1 sample per pixel. In contrast, radia-
tive backpropagation uses a minimal amount of memory and never requires multiple
passes. Its memory usage is essentially independent of the volume resolution, as only
the volume and its gradients must be stored.

61

Chapter 4. Radiative Backpropagation

Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours

(a) ReferenceReference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours

(b) Initial state

Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours

(c) Mitsuba 2 (AD)Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours

(d) Ours (biased I)

Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours(e) Ours (biased I+II)

Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours(f) Ours

0 20 40 60 80 100 120
Iteration count

10−4

10−5

O
bj

ec
tiv

e
fu

nc
tio

n
(lo

g
sc

al
e)

Method
Mitsuba 2
Ours
Ours (biased II)
Ours (biased I)
Ours (biased I+II)

0 20 40 60 80
Time (min)

10−4

10−5

Figure 4.5: Recovery of the diffuse globe texture shown in Figure 4.1 from a single reference image. De-

spite indirect observation via multiple refractions and reflections in a scene with complex transport, our

method is able to closely match the reference image in less than ten minutes (Figure 4.1 insets). At the

top, we show the reconstructed textures after 8.5 minutes. Regions that are not visible (even indirectly)

remain close to the initial state. A variant of our technique (“Biased I”) removes a significant source of

variance by approximating incident radiance with a constant, improving convergence at equal iteration

count.

62

Chapter 4. Radiative Backpropagation

Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours

(a) ReferenceReference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours

(b) Initial state

Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours

(c) Mitsuba 2 (AD)Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours

(d) Ours (biased I)

Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours(e) Ours (biased I+II)

Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours(f) Ours

0 25 50 75 100 125 150
Iteration count

10−2

10−1

O
bj

ec
tiv

e
fu

nc
tio

n
(lo

g
sc

al
e)

Method
Mitsuba 2
Ours
Ours (biased II)
Ours (biased I)
Ours (biased I+II)

0 200 400 600 800 1000 1200 1400
Time (s)

10−2

10−1

Figure 4.6: We reproduce the albedo optimization experiment of Nimier-David et al. [14], in which the

spatially-varying albedo of a homogeneous scattering slab must be modified to match the appearance

of a diffuse texture while accounting for subsurface scattering. Starting from a constant gray slab, our

method achieves convergence after a single minute of optimization. The resulting media are shown at the

top at equal time (74 seconds). In this example, using biased gradients (“Biased I”) avoids costly recursive

estimation of incident radiance, which dramatically reduces the runtime cost per iteration.

63

Chapter 4. Radiative Backpropagation

Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours

(a) Reference
Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours

(b) Initial state

Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours

(c) Mitsuba 2 (AD)Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours

(d) Ours (biased I)

Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours(e) Ours (biased I+II)

Reference Initial state

Ours (biased I) Mitsuba 2

Ours (biased I+II) Ours(f) Ours

100 101 102

Iteration count (log scale)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

O
bj

ec
tiv

e
fu

nc
tio

n

Method
Mitsuba 2
Ours
Ours (biased II)
Ours (biased I)
Ours (biased I+II)

101 102 103 104

Time (s, log scale)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Figure 4.7: We also reproduce the volume density optimization experiment of Nimier-David et al. [14].

In this example, Mitsuba 2’s AD-based approach reaches its limits, as the size of the transcript it must

store immediately fills the GPU memory, even for low-resolution 128 × 128 renderings. Insets at the top

show convergence at equal time (2.5 minutes), or at the end of the first iteration in case of Mitsuba 2 (26

minutes).

64

Chapter 4. Radiative Backpropagation

4.5 Conclusion

Differentiable rendering has clear potential as a tool for solving inverse problems in a va-
riety of scientific disciplines. However, previous approaches to differentiable rendering
remain hamstrung by a fundamental performance and scalability bottleneck: reverse-
mode automatic differentiation produces vast amounts of intermediate state that rapidly
exhausts the memory of even the largest available computing platforms. This currently
limits the scope of this technology to relatively simple scenes rendered at low resolu-
tions.

Our method conclusively addresses these limitations. Our main contribution is a
new approach to differentiable simulation of light that does not require a transcript of
intermediate state, thus avoiding burdensome storage overheads and improving perfor-
mance by up to three orders of magnitude. This is remarkable because transcript-less
differentiation of simulation code was previously only possible in rare cases, one famous
example being the adjoint sensitivity method, which relies on the ability to reverse the
flow of time.

We show that a different kind of adjoint can also be constructed for steady-state
light transport simulations that lack a time dimension. In our case, the adjoint phase
emits two differential quantities from sensors and objects that propagate towards each
other akin to ordinary light. Their eventual encounter yields a gradient measurement
that turns the chain rule from a discrete sum over partial derivatives into a continuous
integral on ray space. Another contribution of our work is that it casts the adjoint phase
into familiar light transport terms, enabling the application of a large body of prior work
on sampling transport integrals.

One limitation is that the unbiased version of our algorithm has a time complex-
ity that is quadratic in the path length which could become prohibitive (e.g. in highly
scattering participating media with light paths involving thousands of interactions). We
propose a biased variant that addresses this performance concern and, oddly, appears to
generally improve convergence per iteration.

Our approach admits an efficient GPU implementation using standard toolkits for
megakernel-based rendering. In Chapter 8, we discuss this implementation in detail and
demonstrate the automated creation of adjoint shaders building on Mitsuba 2’s tracing
JIT compiler.

Impact. Vicini et al. [21] have proposed path replay backpropagation (PRB), which
builds on radiative backpropagation to bring the complexity back to linear time. Memory

65

Chapter 4. Radiative Backpropagation

usage remains constant w.r.t. to the path length. PRB relies on the deterministic nature
of pseudo-random number generators to first compute the incident radiance along the
paths, before replaying them to carry out the backpropagation. Furthermore, the algo-
rithm adds support for directional derivatives, enabling e.g. the optimization of surface
normals.

Furthermore, Zeltner et al. [12] show that radiative backpropagation can be extended
to include visibility derivatives by combining the algorithm with the aforementioned
reparametrization-based technique.

Radiative backpropagation has already been leveraged in subsequent work. For ex-
ample, Nindel et al. [130] use our method to optimize parameters of ink mixtures in the
context of 3D printing to finely control the final appearance.

Future work. Our method currently resembles an ordinary path tracer with multiple
importance sampling, and smarter adjoint-specific sampling strategies could be benefi-
cial. Chapter 5 explores such a strategy dedicated to the volumetric case. Finally, our
work focused specifically on the evaluation of gradients, but the underlying optimiza-
tion problem might be challenging even if perfect gradients were freely available. Fur-
ther work on techniques to regularize the energy landscape of differentiable rendering
is therefore imperative. Chapter 11 proposes heuristics in this direction in the context
of indoor room reconstruction from real data.

66

5 | Unbiased InverseVolumeRender-
ing with Differential Trackers

Relevant background: Sections 2.1.3, 2.1.7 and 2.2.3.

In Chapter 4, we introduced radiative backpropagation, and adjoint method for efficient
gradient estimation. One of its advantages is that we can freely apply different impor-
tance sampling techniques to the primal and adjoint problems. In this chapter, we iden-
tify a specific case—in-scattering gradients for differentiable volume rendering—which
requires a dedicated sampling scheme to avoid bias and high variance. To this end, we
propose differential ratio tracking and demonstrate its effectiveness in eliminating bias
and variance concerns.

5.1 Introduction

Volumetric inverse rendering approaches are particularly attractive due to their flexi-
bility in representing both hard and soft surfaces, their inherent smoothness, as well as
their invariance to topological changes. Nonetheless, the efficient evaluation of radia-
tive transfer and its derivatives—as required in a gradient descent algorithm—remains
difficult. Current methods generally follow two strategies to cope with this difficulty:
(i) simplifying the model, such as by only permitting emission and absorption [118]
or limiting the permissible materials and illumination [144], and (ii) developing more
advanced algorithms for efficiently differentiating the radiative transfer equation in its
general form [15, 21, 109]. This chapter contributes to the latter direction, while Chap-
ter 10 discusses the usage of simplified volumetric models in the context of physically
based inverse volume rendering.

First, we follow the general observation that forward-rendering strategies are not
necessarily suitable for differential rendering [12, 115], showing in this instance that
standard volumetric free-flight sampling yields biased and high-variance gradients. This
can be explained intuitively: free-flight sampling places samples on the portions of the
volume contributing most to its appearance (formally: proportionally to the product of
transmittance and density). However, even in empty space, gradients may have non-
trivial magnitude, e.g. to reconstruct an object where previously there was just air. In
Section 5.4, we show that placing samples in all visible regions (proportionally to just

67

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

…SG
D

m
A

da
m Ours

Delta tracking

Di�erential ratio tracking (ours) Delta tracking

Figure 5.1: We demonstrate the high-quality reconstruction of volumetric scattering parameters from

RGB imageswith known camera poses and lighting. This is enabled by our novel differential ratio tracking

formulation, which yields unbiased, low-variance gradients of the radiative transfer equation that can be

directly used for optimization. In the chart (bottom), we report the improvements in reconstruction error

for stochastic gradient descent with momentum (SGDm) as well as Adam. Using aggressive step size

reduction, the Adam optimizer limits the impact of large gradient outliers, though our unbiased gradients

lead to the lowest reconstruction error with either optimizer.

68

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers
Va

ri
an

ce
M

ea
n

gr
ad

ie
nt

Gradients with respect to medium density (parameter space)

(a) Differential ratio tracking (ours) (b) Delta tracking

Figure 5.2: Continued from Figure 5.1. Traditional free-flight sampling—e.g. by delta tracking—while

effective at low-variance primal rendering, exhibits bias and high variance in gradient estimation with

respect tomediumdensity (b), which negatively affects optimization. Ourmethod (a) fully eliminates bias

and variance concerns. Gradient mean and variance values are shown for slice 𝑧 = 64 of the 256×128×128
parameter space.

transmittance) significantly reduces the variance of these types of gradients (Figure 5.2).
Based on this insight, we propose a novel sampling scheme, differential ratio tracking,
that combines (residual) ratio tracking and reservoir sampling to sample distances pro-
portionally to transmittance.

We use an additional weighted reservoir to integrate differential ratio tracking into
the linear-time path replay backpropagation algorithm [21], leading to better-behaved
gradient descent optimization and lower reconstruction error with limited overhead, as
shown in Figures 5.1 and 5.3. Our sampling scheme is dedicated to physically-based scat-
tering and absorbing volumes (which are inherently relightable), as opposed to NeRF-
style emissive volumes [118].

We begin by reviewing the relevant volumetric rendering theory (Section 5.2). Our
differential ratio tracking strategy for low-variance gradient estimation is derived in
Section 5.4. We conclude with an evaluation and discussion of our method in Section 5.5.

69

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

5.2 Background

We review the most relevant aspects of volumetric path tracing (primal rendering) and
the radiative backpropagation formulation for gradient estimation (adjoint rendering).

5.2.1 Volumetric path tracing

We adopt the notation introduced in Section 2.2.3. Recall the volume rendering equa-
tion (2.22)

𝐿𝑖 (x,𝝎) =
∫ 𝑡𝑠

0
T(𝑡) [

𝜎𝑎 (𝑡) 𝐿𝑒 (𝑡) + 𝜎𝑠 (𝑡) 𝐿𝑠 (𝑡,𝝎)] d𝑡

+ T(𝑡𝑠)
[
𝐿𝑒 (𝑡𝑠) + 𝐿𝑠 (𝑡𝑠,𝝎)] . (5.1)

Before considering the estimation of gradients, volumetric rendering requires dedicated
algorithms and sampling methods, generalizing the surface case.

Free-flight distance sampling. Estimating Equation (5.1)—as well as its null scat-
tering form, Equation (A.1)—with Monte Carlo integration involves efficiently sampling
a so-called free-flight distance 𝑡 , which corresponds to the distance to the next light-
particle interaction along the ray. This distance is distributed proportionally to𝜎𝑡 (𝑡) T(𝑡),
which can be sampled in closed form in homogeneous volumes. In heterogeneous vol-
umes, however, a more advanced algorithm must be used. Delta tracking [145], also
known as Woodcock tracking [146], homogenizes the medium by introducing fictitious
matter such that the extinction coefficient of the volume is equal a chosenmajorant value
𝜎 everywhere.

The algorithm then analytically samples a free-flight distance proportionally to𝜎 T̄(𝑡),
where T̄(𝑡) is the homogenized transmittance. Finally, the ray is stochastically deter-
mined to have encountered a real particle with probability 𝜎𝑡 (𝑡)/𝜎, or a fictitious one
otherwise. The algorithm repeats until a real interaction has been found; the resulting
distance 𝑡 has been shown to be distributed proportionally to 𝜎𝑡 (𝑡) T(𝑡) as desired [146].
The choice of majorant 𝜎 affects the efficiency: the more closely it bounds 𝜎𝑡 , the smaller
the number of fictitious interactions that are processed—but the higher the variance.

Transmittance estimation. A related operation in volumetric light transport is es-
timating the transmittance T(𝑡) along a ray segment: the fraction of light traveling a
distance 𝑡 without being absorbed or scattered away. Transmittance can be estimated in

70

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

a number of ways, such as by marching along the ray in fixed intervals and correcting
for bias [147], and, most relevant for us, by free-flight sampling and thus delta tracking.
Delta tracking can be thought of as a binary estimate of T(𝑡). The estimate is one (all
light is transmitted) if a sampled free-flight distance is larger than 𝑡 and zero (no light is
transmitted) otherwise. This interpretation can be generalized to lower-variance, non-
binary estimates of the transmittance by keeping track of the proportion of real vs. ficti-
tious matter 𝜎𝑡 (𝑡)/𝜎 at each step; this is called ratio tracking [148]. Our method combines
ratio tracking and reservoir sampling to sample proportionally to T(𝑡) only rather than
𝜎𝑡 (𝑡) T(𝑡). We will show this density to be desirable for unbiased, low-variance gradient
estimation in (near-)empty regions of space; illustrated in Figure 5.4.

5.2.2 Path replay backpropagation

In Chapter 4, we introduced radiative backpropagation, an adjoint method for efficient
gradient estimation. As presented, the unbiased variant of radiative backpropagation
requires starting recursive paths at each interaction with differentiable objects in order
to obtain an estimate of the incident radiance 𝐿𝑖 . This raises the worst-case complexity
to O(𝑛2), where 𝑛 is the number of path vertices. Path replay backpropagation [21] lever-
ages the deterministic nature of pseudo-random number generators to bring complexity
back to linear time and constant memory.

Our method does not depend on either radiative or path replay backpropagation.
However, these adjoint methods make it possible to efficiently estimate gradients for
millions of parameters in parallel, including in the presence of high-order scattering.
Furthermore, their formulation makes it straightforward to apply separate specialized
sampling strategies to the primal- (forward rendering of the scene) and adjoint problems
(estimating gradients w.r.t. scene parameters). It is thus desirable to ensure that our pro-
posed algorithm is compatible with them.

Path replay backpropagation consists of three steps:

(I) A forward (primal) rendering of the current state of the scene is performed and
used to evaluate the objective function.

(II) A second, uncorrelated1 primal rendering pass estimates and stores the radiance
𝐿II
𝑖 for each path.

1The need for an uncorrelated rendering pass is discussed in Section 3.2.

71

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

(III) An adjoint rendering pass replays the paths traced in step (II) using the same ran-
dom number generator seed. The stored incident radiance values 𝐿II

𝑖 are used to
weight gradients, without the need to trace a recursive path.

In the context of this chapter, it is important to note that steps (II) and (III) must use
the same paths, and hence the same sampling methods to construct them. We must take
care to make any new sampling technique compatible with this constraint in order to
preserve the linear runtime (Section 5.4.5).

(a) Delta Tracking (b) Ours (constant init.) (c) Ours (emissive init.)

Figure 5.3: Optimizing a scattering volume to reproduce an object from 64 reference images. The false-

color visualization indicates the absolute difference between the final result and the reference image.

(a) Using the same free-flight sampling technique to estimate both the primal image and the gradients

results in biased and high-variance gradients (Section 5.3.2), hindering convergence in empty or low-

density regions. (b) Using our novel differential ratio tracking technique (Section 5.4.1) significantly

reduces gradient variance, leading to a better reconstruction. (c) We further propose to initialize the

scattering volume optimization from the result of a nonphysical emissive volume optimization in the

style of NeRF [118] (Section 10.1). This helps overcome local minima, greatly improving the sharpness of

the final model.

5.3 Issues with free-flight based gradient estimation

We now turn to the problem of efficiently estimating gradients with respect to scene
parameters in the presence of heterogeneous media.

72

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

In-scattering gradients Transmittance gradients

Missing gradients (bias)Poorly sampled gradients

Figure 5.4: Forward rendering of volumes involves sampling free-flight distances 𝑡 proportionally to the

density-weighted transmittance 𝜎𝑡 (𝑡) T(𝑡). Directly applying forward sampling techniques in the context

of gradient estimation (the adjoint) leads to biased and high-variance gradients. In particular, gradients

due to in-scattering are poorly sampled where density is low and never sampled where it is zero. We

propose a tailored importance sampling scheme for the adjoint, which resolves both bias and variance

concerns.

5.3.1 Differentiating the radiative transfer equation

Reconstructing media that are both reflective and emissive introduces ambiguities that
are challenging to resolve using only image-based observations. Since the appearance
of real-world objects is usually determined by their scattering properties rather than in-
ternal emission, we restrict our goal to reconstructing non-emissive volumes that obtain
their color from scattering and absorption; we set 𝐿𝑒 = 0 within the medium. Using the
𝜽 = (𝜎𝑡 , 𝛼) parametrization of the medium, the radiative transfer equation (5.1) simpli-
fies to:

𝐿𝑖 (x,𝝎) =
∫ 𝑡𝑠

0
T(𝑡) 𝜎𝑡 (𝑡) 𝛼 (𝑡) 𝐿𝑠 (𝑡,𝝎) d𝑡 + T(𝑡𝑠)

[
𝐿𝑒 (𝑡𝑠) + 𝐿𝑠 (𝑡𝑠,𝝎)] , (5.2)

where 𝑡𝑠 denotes the position of the nearest surface (or volume bounding box) in the
direction of the ray.

For a given ray traversing the medium, the radiance derivatives w.r.t. volume param-
eters 𝜽 are as follows. We separate and rearrange the terms to explain their individual
roles, as well as to map more directly to the sampling algorithms. We omit the depen-
dency on 𝝎 for conciseness.

The first term captures how the in-scattered radiance can increase due to a local

73

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

density (𝜎𝑡) or albedo (𝛼) increase:

𝜕𝜽𝐿𝑖 (x) =
∫ 𝑡𝑠

0
𝑇 (𝑡) 𝜕𝜽

[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

]
𝐿𝑠 (𝑡) d𝑡 · · · (5.3)

The second term describes how a density increase at an earlier position 𝑡 ′ will attenuate
the local contribution, whether from a medium interaction (first row) or a surface (second
row):

· · · +
∫ 𝑡𝑠

0
𝑇 (𝑡) 𝜎𝑡 (𝑡) 𝛼 (𝑡)

[∫ 𝑡

0
−𝜕𝜽𝜎𝑡 (𝑡 ′) d𝑡 ′

]
𝐿𝑠 (𝑡) d𝑡

+𝑇 (𝑡𝑠)
[∫ 𝑡𝑠

0
−𝜕𝜽𝜎𝑡 (𝑡 ′) d𝑡 ′

] [
𝐿𝑒 (𝑡𝑠) + 𝐿𝑠 (𝑡𝑠)

] · · · (5.4)

Finally, the third term captures changes in incident radiance after a scattering event at
𝑡 in the medium or at 𝑡𝑠 on a surface. Changes later along the path are weighted by the
transmittance of the current segment and the scattering coefficient of the current event:

· · · +
∫ 𝑡𝑠

0
𝑇 (𝑡) 𝜎𝑡 (𝑡) 𝛼 (𝑡) 𝜕𝜽𝐿𝑠 (𝑡) d𝑡

+𝑇 (𝑡𝑠)
[
𝜕𝜽𝐿𝑒 (𝑡𝑠) + 𝜕𝜽𝐿𝑠 (𝑡𝑠)

]
. (5.5)

5.3.2 Free-flight based gradient estimators

Standard free-flight distance sampling proportionally to𝜎𝑡 (𝑡)𝑇 (𝑡), such as by delta track-
ing, is well suited for the primal problem of Equation (5.2): the probability density func-
tion cancels most factors. However, using free-flight sampling to estimate the adjoint
is problematic, as we will show below. Note its usage can be inadvertent, e.g. when
applying automatic differentiation to a volumetric path tracer.

Using free-flight importance sampling to sample the adjoint integrals (5.3)–(5.5) yields
the following estimators. A valid free-flight distance 𝑡 < 𝑡𝑠 is sampled within the medium
with probability 𝜎𝑡 (𝑡) T(𝑡), resulting in a Monte Carlo sample with contribution

⟨𝜕𝐿DT
1 ⟩ = 𝜕𝜽

[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

]
𝜎𝑡 (𝑡) 𝐿𝑠 (𝑡) + 𝛼 (𝑡) 𝜕𝜽𝐿𝑠 (𝑡) . (5.6)

Otherwise, if 𝑡 ≥ 𝑡𝑠 , the surface at 𝑡𝑠 is sampled with probability T(𝑡𝑠), contributing

⟨𝜕𝐿DT
2 ⟩ = 𝜕𝜽𝐿𝑒 (𝑡𝑠) + 𝜕𝜽𝐿𝑠 (𝑡𝑠) . (5.7)

74

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

0 1000 2000 3000 4000 5000 6000
Iteration

2

3

4

5

6

O
bj
ec
tiv

e
fu
nc
tio

n
(L
1)

1e−3

Free-flight
Ours (a) Initial state (b) Free-flight

(c) Ours (d) Reference

Figure 5.5: In this illustrative example, the medium density 𝜎𝑡 is optimized to match 32 reference images

of a cloud (d). The initial state (a) is set to 𝜎𝑡 = 0. This represents a worst-case scenario for the free-flight
based gradient estimator (b): its bias prevents it from escaping the initial state. Indeed, in-scattering

gradients are missing where 𝜎𝑡 = 0 and transmittance gradients point in the direction opposite to the

solution (i.e. further decreasing 𝜎𝑡 to increase brightness, which is impossible). Our method correctly

estimates in-scattering gradients even in empty space, which allows it to converge to a good solution (c).

In either case, transmittance gradients are accumulated at locations 𝑡 ′ along the ray
segment (0,min(𝑡, 𝑡𝑠)) corresponding to the location of null-scattering interactions:

⟨𝜕𝐿DT
3 ⟩ =



−𝜕𝜽𝜎𝑡 (𝑡 ′) 𝛼 (𝑡) 𝐿𝑠 (𝑡) if 𝑡 < 𝑡𝑠,

−𝜕𝜽𝜎𝑡 (𝑡 ′)
[
𝐿𝑒 (𝑡𝑠) + 𝐿𝑠 (𝑡𝑠)

]
otherwise.

(5.8)

We will refer to these estimators as “free-flight” as a shorthand for free-flight sampling-
based gradient estimators. There are two issues with estimator ⟨𝜕𝐿DT

1 ⟩.

Bias. If the medium density 𝜎𝑡 (𝑡) is zero, estimator ⟨𝜕𝐿DT
1 ⟩ is never sampled, even

though the integrand of Equation (5.3), responsible for in-scattering gradients, is not
zero. This results in bias. Figure 5.5 illustrates this bias in a specially constructed worst-
case scenario, with 𝜎𝑡 (𝑡) initialized to zero. Since the background is darker than the
target image, transmittance gradients point in the wrong direction: brightening the im-
age would require increasing transmittance by further lowering 𝜎𝑡 , which is not possible.
Because in-scattering gradients are missing, the optimization cannot escape this initial
state. Interestingly, an analogous situation arises for surface BSDF optimization when
the BSDF is exactly zero. In that case, however, it is legitimate to clamp BSDFs to a small
nonzero value, as truly black surfaces do not occur in normal circumstances.

75

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

Variance. Furthermore, if the density 𝜎𝑡 (𝑡) is close to zero, the factor 1/𝜎𝑡 (𝑡) in Equa-
tion (5.6) leads to large gradient outliers in gradients w.r.t. density 𝜎𝑡 . Because distances
are sampled proportionally to extinction-weighted transmittance, it may appear that the
low probability of sampling 𝑡 where 𝜎𝑡 (𝑡) is small would compensate for the additional
variance. However, Tregan et al. [149] have shown (for the case of a homogeneous slab)
that the resulting variance is actually unbounded2. Note that this issue occurs as well
when using the null-scattering integral formulation, see Appendix A. Gradients w.r.t.
albedo 𝛼 , however, are not affected.

The effect of these gradient outliers is illustrated on an inverse rendering problem
in Figure 5.1. Reconstruction becomes impossible using standard stochastic gradient de-
scent. Optimizers that track gradient variance via second moments, such as Adam [150],
will at this point aggressively reduce the step size, enabling acceptable convergence. Re-
constructions, however, remain inferior to that obtainable with the unbiased gradient
estimators presented in this chapter, see Figure 5.3 and Chapter 10.

Defensive sampling. A seemingly obvious solution to the problem we have just iden-
tified would be to modify the sampling strategy to include a constant “background den-
sity” 𝜖 :

𝑝def (𝑡) = (𝜎𝑡 (𝑡) + 𝜖) T𝜖 (𝑡) , (5.9)

which can be interpreted as a form of defensive sampling. If 𝜖 is sufficiently large, the
problematic term in the adjoint would no longer produce gradient outliers:

1
𝜎𝑡 (𝑡) + 𝜖

≤ 1
𝜖
. (5.10)

In the context of correlated sampling for perturbation analysis of reactor designs,
Rief et al. [83] and Rief [151] have proposed a similar scheme, where density is added
in near-empty regions. However, their solution forces scattering interaction with the
added density to be fully forward scattering.

While the elimination of gradient outliers may seem like a clear advantage, we must
also consider the effect of the modified density on all other terms of the adjoint. Im-
portantly, the unmodified density allowed path throughput to stay close to one in Equa-
tions (5.6-5.7). With 𝑝def , non-unit sampling weights compound over the length of the
path. In a volumetric rendering context where long paths are common, this can become
problematic.
2More precisely, the argument of Tregan et al. concerns variance due to the reciprocal event of null scat-
tering where 𝜎𝑛 ≈ 𝜎 , which is analogous to 𝜎𝑡 ≈ 0. This is discussed in more detail in Appendix A.

76

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

Moreover, recall that when using path replay backpropagation (Section 5.2.2), the
same paths must be constructed in phases (II) and (III). This means that either the sub-
optimal defensive sampling strategy must also be used to estimate the incident radiance
terms in the adjoint, injecting additional variance into the gradient estimates, or defen-
sive samples must be drawn in addition to the paths constructed in phases (II) and (III),
increasing cost. In the following, we will take the latter approach—drawing additional
samples—however using a sampling technique that is tailored to the integrand of Equa-
tion (5.3).

Alternative strategies. Adopting a ray marching-based estimator would be suscepti-
ble to the same issues, even when ignoring the bias due to the discretization of the trans-
mittance function. Indeed, the underlying density being sampled, 𝜎𝑡 (𝑡) T(𝑡), is identical
to the delta tracking-based estimator discussed above. Likewise, we did not find repa-
rameterizing the volume density, e.g. 𝜎𝑡 (𝑡) = log(𝜃 (𝑡)), to be a suitable solution—near-
empty regions retain high-variance gradients, and are moreover susceptible to vanishing
gradients. Usage of track-length estimators [83] could lead to different variance charac-
teristics, and should be investigated in future work.

5.4 Differential ratio tracking

5.4.1 Unbiased estimators

We have identified the 1/𝜎𝑡 term of Equation (5.6) to be the source of bias and variance.
Fundamentally, the issue stems from the direct application of a primal sampling tech-
nique to the adjoint problem, where the integrand is different. This same problem was
identified in other contexts by Zeltner et al. [12]. We propose replacing the problematic
⟨𝜕𝐿DT

1 ⟩ estimator with a simple, tailored estimator that samples distances proportionally
to transmittance only.

The need to adopt a specialized sampling approach makes intuitive sense: regions of
the medium with 𝜎𝑡 ≈ 0 are only sampled rarely with primal sampling strategies (or not
at all, if 𝜎𝑡 = 0). At the same time, if transmittance is close to 1, then a small change of
𝜎𝑡 can have a significant impact on the solution of Equation (5.3). These regions there-
fore generate gradients during the adjoint transport step and must receive sufficiently
many samples to produce low-variance gradient estimates. Sampling proportionally to
transmittance addresses both the bias and variance issues discovered in Section 5.3.2.

77

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

Assuming for a moment that we are able to sample 𝑡 ′ ∼ T(𝑡 ′), we replace the two
summands in ⟨𝜕𝐿DT

1 ⟩ (Equation (5.6)) by the following two respective estimators:

⟨𝜕𝐿DRT
1𝑎 ⟩ B 𝐿𝑠 (𝑡 ′) 𝜕𝜽

[
𝜎𝑡 (𝑡 ′) 𝛼 (𝑡 ′)

]
, (5.11)

⟨𝜕𝐿DRT
1𝑏 ⟩ B 𝛼 𝜕𝜽𝐿𝑠 (𝑡) . (5.12)

Here, 𝑡 ′ is used only to sample in-scattering gradients ⟨𝜕𝐿DRT
1𝑎 ⟩ where the original strat-

egy was problematic. For all other terms, 𝜎𝑡T is a better suited density due to cancelling
more factors, therefore we keep 𝑡 ∼ 𝜎𝑡T in ⟨𝜕𝐿DRT

1𝑏 ⟩ and set ⟨𝜕𝐿DRT
2 ⟩ B ⟨𝜕𝐿DT

2 ⟩ as well as
⟨𝜕𝐿DRT

3 ⟩ B ⟨𝜕𝐿DT
3 ⟩ to estimate the remaining terms.

Readers familiar with path replay backpropagation may notice a potential drawback
in Equation (5.11): because 𝑡 ′ is sampled from a different strategy than the one used to
construct the path, the path replay algorithm cannot efficiently produce an estimate of
incident illumination 𝐿𝑖 at 𝑡 ′. In the worst case, we may have to start a recursive path at
each sampled point 𝑡 ′, raising the time complexity to O(𝑛2). We will return to this issue
in Section 5.4.5.

5.4.2 Sampling proportionally to transmittance

We now turn to the derivation of our transmittance importance sampling technique. To
this end, we build over the family of delta- [145, 146] and ratio trackers [148].

Target distribution. Let us write down the density 𝑝T(𝑡) of this hypothetical trans-
mittance based sampling strategy. Because T is not a normalized density on its own, we
must apply a normalization constant defined in terms of an integral:

𝑝T(𝑡) = T(𝑡)∫ 𝑡𝑠
0 T(𝑡 ′) d𝑡 ′

=
T(𝑡)
𝐶

. (5.13)

The unbiased estimation of such an integral in the reciprocal presents a challenge. More-
over, T is itself defined in terms of an integral. These circumstances prevent the use of
standard methods like inverse transform sampling.

Note that there is an implicit assumption that 𝐶 remains finite, which requires that
the transmittance decays sufficiently quickly. In practice, the scene would likely contain
only media within limited spatial extent, in which case sampling can be restricted to this
volume to avoid this technicality. We have accounted for this assumption by setting the
integral’s upper limit to 𝑡𝑠 , the location of the closest surface or medium bounding box
along the ray.

78

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
tin

ct
io

n-
w

ei
gh

te
d

tra
ns

m
itt

an
ce

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0

2

4

M
ed

iu
m

 co
ef

fic
ie

nt

0.0 0.5 1.0 1.5 2.0 2.5
Sampling weight

0.00

0.25

0.50

0.75

1.00

Co
un

t

1e4

0.0 0.5 1.0 1.5 2.0 2.5
Sampling weight

0.0

0.5

1.0

1e4

0.0 0.5 1.0 1.5 2.0 2.5
Sampling weight

0

2

4

6

1e3

t T Primal sampling

t c

Transmittance Individual trackings Average trackings Our weighted density

Sampling weight Normalization constant Average weight

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
tin

ct
io

n-
w

ei
gh

te
d

tra
ns

m
itt

an
ce

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0

2

4

M
ed

iu
m

 co
ef

fic
ie

nt

0.0 0.5 1.0 1.5 2.0 2.5
Sampling weight

0.00

0.25

0.50

0.75

1.00

Co
un

t

1e4

0.0 0.5 1.0 1.5 2.0 2.5
Sampling weight

0.0

0.5

1.0

1e4

0.0 0.5 1.0 1.5 2.0 2.5
Sampling weight

0

2

4

6

1e3

t T Primal sampling

t c

Transmittance Individual trackings Average trackings Our weighted density

Sampling weight Normalization constant Average weight

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
tin

ct
io

n-
w

ei
gh

te
d

tra
ns

m
itt

an
ce

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0

2

4

M
ed

iu
m

 co
ef

fic
ie

nt

0.0 0.5 1.0 1.5 2.0 2.5
Sampling weight

0.00

0.25

0.50

0.75

1.00

Co
un

t

1e4

0.0 0.5 1.0 1.5 2.0 2.5
Sampling weight

0.0

0.5

1.0

1e4

0.0 0.5 1.0 1.5 2.0 2.5
Sampling weight

0

2

4

6

1e3

t T Primal sampling

t c

Transmittance Individual trackings Average trackings Our weighted density

Sampling weight Normalization constant Average weight
(a) Medium properties

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
tin

ct
io

n-
w

ei
gh

te
d

tra
ns

m
itt

an
ce

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0

2

4

M
ed

iu
m

 co
ef

fic
ie

nt

0.0 0.5 1.0 1.5 2.0 2.5
Sampling weight

0.00

0.25

0.50

0.75

1.00

Co
un

t

1e4

0.0 0.5 1.0 1.5 2.0 2.5
Sampling weight

0.0

0.5

1.0

1e4

0.0 0.5 1.0 1.5 2.0 2.5
Sampling weight

0

2

4

6

1e3

t T Primal sampling

t c

Transmittance Individual trackings Average trackings Our weighted density

Sampling weight Normalization constant Average weight

(b) Delta Tracking (c) Ratio Tracking (d) Residual Ratio Tracking

Figure 5.6: Demonstrating our novel transmittance sampling methods based on delta- and (residual) ra-

tio tracking. (a, bottom)We use a 1D analytic medium with density following a sinusoidal function. The

chosen majorant and control densities are also shown. (a, top) Forward rendering of such a medium

involves sampling free-flight distances proportionally to 𝜎𝑡 (𝑡) T(𝑡). Locations where 𝜎𝑡 ≈ 0 receive few

or no samples, which leads to bias and high variance when using this same sampling technique to esti-

mate gradients. Instead, we propose dedicated transmittance sampling techniques for the adjoint. Delta

tracking (b), ratio tracking (c) and residual ratio tracking (d) can be interpreted as building estimates

of the transmittance function using binary, piecewise constant and piecewise-exponential functions re-

spectively. We build transmittance sampling algorithms from those trackers by sampling distances from

their individual function approximations. They produce weighted samples (green histogram) with density

equal to the transmittance function T, where the weights (yellow histogram) approximate the normaliza-

tion constant of T.

79

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

It would seem that the presence of the normalizing constant𝐶 forces us to revise the
estimator of Equation (5.11) to

⟨𝜕𝐿DRT
1𝑎 ⟩ = 𝐶 𝐿𝑠 (𝑡 ′) 𝜕𝜽

[
𝜎𝑡 (𝑡 ′) 𝛼 (𝑡 ′)

]
. (5.14)

However, instead of evaluating Equation (5.14) using unweighted samples that are ide-
ally proportionally to the re-normalized transmittance, we pursue a strategy that gen-
erates weighted samples. In other words, the samples alone will not have the correct
distribution, but they will be distributed according to 𝑝T when considered along with
their weights. These weights will also serve a secondary purpose: to provide an un-
biased estimate of the normalization constant 𝐶 . Serendipitously, all of this is possible
with a simple extension to the family of delta- and ratio trackers.

Delta tracking. We start with a simple strategy based on the delta tracking free-flight
distance sampling method. On a given ray segment [0, 𝑡𝑠), delta tracking repeatedly sam-
ples steps 𝑡0 from a homogenized medium with density 𝜎 ≥ 𝜎𝑡 (𝑡) ∀𝑡 . At each step, the
nature of the interaction is determined stochastically: a real particle is encountered with
probability 𝜎𝑡 (𝑡)/𝜎. Otherwise, a null particle is encountered and the traversal continues.

If a real interaction occurs at 𝑡1 ∈ [0, 𝑡𝑠), light is scattered or absorbed and the ray
throughput falls to zero. The free-flight distance 𝑡1 is sampled with probability

𝑝1(𝑡) = 𝜎𝑡 (𝑡) T(𝑡).

We can interpret this randomized process as creating the following binary function or
“tracking”:

𝑓DT(𝑡) =



1 if 0 < 𝑡 ≤ min(𝑡1, 𝑡𝑠),
0 otherwise.

An example tracking is drawn in Figure 5.7 (left, blue curve). By averaging together
many such trackings, we obtain an unbiased estimate of transmittance at all points. In
Figure 5.6, we draw individual trackings as thin red lines, and the averaged function
estimate in blue.

Sampling from a medium realization. We could interpret each sampled tracking
𝑓DT as the actual transmittance function of a particular realization of the stochastic
medium. We propose sampling proportionally to that transmittance function and show

80

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

Area = = normalization = sampling weight

Differential Delta TrackingDelta Tracking

Tr
an

sm
itt

an
ce

Distance

Area = normalization = sampling weight

Differential Ratio TrackingRatio Tracking
Tr

an
sm

itt
an

ce

Distance

Figure 5.7: Our proposed sampling methods build on the family of delta- (left) and ratio (right) trackers.

The trackers build piecewise approximations 𝑓 of the true transmittance function T. We simply sample

a distance proportionally to the area under 𝑓 which, together with a sampling weight equal to the total

area under the curve, yields unbiased samples of T.

that the resulting density exactly corresponds to our target. Given 𝑡1 ∼ 𝑝1 sampled by
delta tracking, we simply sample a new distance

𝑡2 B 𝑡1 𝑠, with 𝑠 ∼ 𝑝𝑠 (𝑠) B 𝟙[0,1) (𝑠).

This step is illustrated in Figure 5.7 (left, green arrow). Let us examine the corresponding
product density

𝑝2(𝑡) =
∫ +∞

−∞
𝑝1

(𝑡
𝑠

)
𝑝𝑠 (𝑠) 1

|𝑠 | d𝑠

=
∫ 1

0
𝑝1

(𝑡
𝑠

) 1
𝑠

d𝑠

(1)
=

∫ +∞

𝑡
𝑝1(𝑞) 1

𝑞
d𝑞 ,

where step (1) involves the change of integration variable 𝑞 B 𝑡/𝑠. Unfortunately, 𝑝2

does not quite correspond to our desired density. We correct it by associating a weight

81

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

𝑤 B 𝑞 = 𝑡/𝑠 to each sample 𝑡 . The weighted density is

𝑝2(𝑡) =
∫ +∞

−∞
𝑝1

(𝑡
𝑠

)
𝑝𝑠 (𝑠) 𝑡

𝑠

1
|𝑠 | d𝑠

(1)
=

∫ +∞

𝑡
𝑝1(𝑞) d𝑞

=
∫ +∞

𝑡
𝜎𝑡 (𝑞) T(0, 𝑞) d𝑞

= T(0, 𝑡)
∫ +∞

𝑡
𝜎𝑡 (𝑞) T(𝑡, 𝑞) d𝑞 , (5.15)

where (1) denotes the same change of variable as before. Georgiev et al. [2019, Equa-
tion (9)] have shown that transmittance can be expressed as the following Volterra inte-
gral equation:

T(𝑎, 𝑏) = 1 −
∫ 𝑏

𝑎
𝜎𝑡 (𝑠) T(𝑠, 𝑏) d𝑠 .

Substituting into Equation (5.15) yields

𝑝2(𝑡) = T(0, 𝑡) (1 − T(𝑡, +∞))
= T(0, 𝑡) − T(0, +∞) .

Finally, using our earlier assumption that the normalization constant 𝐶 is finite3, we
have T(0, +∞) = 0 and obtain

𝑝2(𝑡) = T(0, 𝑡) .

We conclude that the weighted samples (𝑡2,𝑤 = 𝑡2/𝑠) have the desired distribution and
call this sampling technique differential delta tracking. In Figure 5.6b, we confirm experi-
mentally that the weighted density matches the transmittance of an example 1D medium
slice.

Normalization constant. Further inspection reveals that the chosen sampling weight
is quite meaningful: 𝑡2/𝑠 = 𝑡1 is exactly the area under the curve of the binary function
𝑓DT. In other words, it captures the difference between our unnormalized target density
𝑇 and the normalized density we are actually sampling from. Moreover, by construction
of delta tracking, the trackings approximate the transmittance function [148]:

E

[∫ 𝑡𝑠

0
𝑓DT(𝑠) d𝑠

]
= E[𝑡1] =

∫ 𝑡𝑠

0
T(𝑠) d𝑠 = 𝐶 . (5.16)

3In practice, for volumes defined within finite spatial extents, this is equivalent to setting 𝜎𝑡 = +∞ beyond
the volume’s domain.

82

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

The sampling weight 𝑤 therefore takes on the role of 𝐶 in Equation (5.14), completing
the estimator.

5.4.3 Differential ratio tracking

Using the same intuition, we can build a more efficient transmittance sampling tech-
nique based on ratio tracking [148], which is a simple and effective strategy that ex-
pands on delta tracking to compute unbiased estimates of the transmittance along a ray
segment (0, 𝑡𝑠). As before, successive steps 𝑡𝑖 are sampled in closed form from a homog-
enized medium with density 𝜎 ≥ 𝜎𝑡 (𝑥) ∀𝑥 . However, rather than sampling a binary
real/null decision at each step, the probability of interacting with a real particle is used
to update the estimated transmittance up to the current point. This can be interpreted
as building a piecewise constant, rather than binary, tracking. It approximates the trans-
mittance function more closely:

𝑓RT(𝑡) =
∏

𝑡𝑖≤min(𝑡,𝑡𝑠)
1 − 𝜎𝑡 (𝑡𝑖)

𝜎
,

where 𝜎𝑡 (𝑡𝑖)/𝜎 is the probability of interacting with a real particle. An example piecewise
constant tracking 𝑓RT is drawn in Figure 5.7 (right, blue curve).

Sampling from ratio trackings. Following the same intuition as in Section 5.4.2, we
derive a transmittance sampling technique from the ratio tracking algorithm. Where
differential delta tracking simply needed to sample from the binary function 𝑓DT, we
now need to sample from the piecewise constant 𝑓RT.

Given a realization 𝑓RT, it is easy to build and sample from a discrete 1D distribution
based on the area under each constant segment. Once a segment has been selected,
we simply sample uniformly along it. This step is illustrated in Figure 5.7 (right, green
arrow). As before, we associate a sampling weight 𝑤 equal to the area under the curve
of 𝑓RT:

𝑤 =
∑︁
𝑡𝑖

(𝑡𝑖+1 − 𝑡𝑖) 𝑓RT(𝑡𝑖) , (5.17)

with E[𝑤] = E
[∫ 𝑡𝑠

0
𝑓RT(𝑠) d𝑠

]
=

∫ 𝑡𝑠

0
T(𝑠) d𝑠 = 𝐶 . (5.18)

Due to the individual trackings’ closer match to the transmittance curve, the sampling
weights also converge faster to 𝐶 .

83

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

Online segment sampling. The sampling method described above involves fully
constructing a tracking 𝑓RT before sampling proportionally to its area. While this is cer-
tainly feasible, the storage and computational overhead would be unnecessarily high,
especially considering that the number of segments is not known ahead of time and
grows with the majorant 𝜎 and total distance 𝑡𝑠 .

Instead, we turn toweighted reservoir sampling [153] in order to sample a segment on-
line, simultaneously with ratio tracking. Desirably, reservoir sampling uses O(1) mem-
ory and has very limited computational overhead. Its pseudocode is included in Listing 4.

class Reservoir:

y = 0

w_sum = 0

n = 0

def update(x, w):

w_sum += w

n += 1

if rand() < w / w_sum:

y = x

def reservoir_sampling(samples):

r = Reservoir()

for x, w in samples:

r.update(x, w)

return r.y

Listing 4: Pseudocode for the weighted reservoir sampling algorithm of Chao [153]. Importantly, the

reservoir update can be carried out online, as samples are being produced and without storing them. We

will use this fact in Listing 5. Adapted from [154, Algorithm 2].

At each step 𝑡𝑖 → 𝑡𝑖+1 of ratio tracking, we propose to the reservoir sampling algo-
rithm the corresponding segment of 𝑓RT with a weight equal to the area under it:

𝑤𝑖 = 𝑑𝑖 𝑓RT(𝑡𝑖) , with 𝑑𝑖 = 𝑡𝑖+1 − 𝑡𝑖 .

The reservoir is updated to this segment with probability 𝑤𝑖/
∑𝑖

𝑗=1𝑤 𝑗 . Once ratio track-
ing terminates by reaching the maximum distance 𝑡𝑠 , we read the values (𝑡𝑟 , 𝑑𝑟) from
the reservoir. By construction of reservoir sampling, this segment was sampled with
probability 𝑑𝑟 𝑓RT(𝑡𝑟)/

∑
𝑗 𝑑 𝑗 𝑓RT(𝑡 𝑗). Moreover, the overall sample weight𝑤 =

∑
𝑗 𝑑 𝑗 T(𝑡 𝑗)

is readily available as it is computed as part of the reservoir sampling algorithm.
We will refer to this estimator as differential ratio tracking. Its full pseudocode is

given in Listing 5. We also demonstrate it in action on a 1D example in Figure 5.6c.

84

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

def drt_sample(𝑡max):

Tr = 1.

trun = 𝑤acc = 0.

while trun < tmax :

Sample from the homogenized medium

dt = − log(1−rng())/�̄�
dt = min(dt, tmax - trun)

Propose current constant segment with weight

equal to area under the curve.

𝑤step = Tr * dt

𝑤acc += 𝑤step

if (rng() * 𝑤acc) < 𝑤step :

Update reservoir (happens at least once)

reservoir = (trun , dt)

Update transmittance estimate

Tr *= 1 - (𝜎𝑡 (trun) / 𝜎)

trun = trun + dt

Final uniform sampling over the chosen segment

t, dt = reservoir

t = t + rng() * dt

assert t ≤ tmax

return t, 𝑤acc

Listing 5: Differential ratio tracking efficiently samples 𝑡 proportionally to transmittance T(𝑡) along the

current ray up to 𝑡max by combining ratio tracking and reservoir sampling. The sampling weight is an

unbiased estimate of the integral of transmittance 𝐶 =
∫ 𝑡𝑠

0 𝑇 (𝑠) d𝑠 .

Differential residual ratio tracking. Finally, we build a third sampling technique
based on residual ratio tracking [148]. Residual ratio tracking can be seen as applying
ratio tracking to a “residual medium” whose density is equal to the original density
minus a control density 𝜎𝑐 . The trackings are therefore further improved from piecewise
constant to piecewise-exponential. Some example trackings are shown in Figure 5.6d.

In practice, we found that the limited improvement in gradient variance did not war-
rant the inclusion of an additional hyperparameter (the control density). Our experi-
ments were therefore conducted with differential ratio tracking. For completeness, the
pseudocode is nevertheless given in Listing 6.

85

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

def drrt_sample(𝑡max):

Tr = 1.

trun = 𝑤acc = 0.

while trun < tmax :

Sample from the homogenized medium

dt = − log(1−rng())/�̄�
dt = min(dt, tmax - trun)

Propose current exponential segment with weight

equal to area under the curve.

𝑤step = Tr * (1 - exp(-dt 𝜎𝑐)) / 𝜎𝑐

𝑤acc += 𝑤step

if (rng() * 𝑤acc) < 𝑤step :

Update reservoir (happens at least once)

reservoir = (trun , dt)

Update transmittance estimate

Tr *= exp(-𝜎𝑐 dt) * (1 - (𝜎𝑡 (trun) − 𝜎𝑐) / 𝜎)

trun = trun + dt

Final sampling over the chosen exponential segment

t, dt = reservoir

t -= log(1 - rng() * (1 - exp(-𝜎𝑐 dt))) / 𝜎𝑐

assert t <= tmax

return t, 𝑤acc

Listing 6: Differential residual ratio tracking pseudocode. 𝜎𝑐 is the control density and 𝜎 the majorant

of the residual medium: 𝜎 ≥ |𝜎𝑡 − 𝜎𝑐 |. Similarly to differential ratio tracking (Listing 5), we combine the

residual ratio tracking transmittance estimator with reservoir sampling to produce weighted samples 𝑡

with density equal to the transmittance function.

86

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

5.4.4 Multiple importance sampling

We now have at our disposal the standard free-flight technique, sampling proportion-
ally to 𝜎𝑡T as well as our novel technique, sampling proportionally to T only. As was
mentioned in Section 5.4.1, the former is well suited to sample all but the in-scattering
gradient term.

Our sampling technique is used to estimate in-scattering gradients, with estimator
⟨𝜕𝐿DRT

1𝑎 ⟩. Since we will construct paths using free-flight sampling in any case (and the in-
cident radiance term 𝐿𝑖 at that point is provided by path replay), we may as well combine
the corresponding in-scattering gradients ⟨𝜕𝐿DT

1 ⟩ with ours using multiple importance
sampling [19]. Luckily, the multiple importance sampling weights themselves are simple
to compute. For example, using the power heuristic:

𝑝DT(𝑡) = 𝜎𝑡 (𝑡)𝑇 (𝑡) , 𝑝DRT(𝑡) = 𝑇 (𝑡) ,

𝑤DT(𝑡) = 𝑝DT(𝑡)2

𝑝DT(𝑡)2 + 𝑝DRT(𝑡)2 =
𝜎𝑡 (𝑡)2

𝜎𝑡 (𝑡)2 + 1 , (5.19)

and 𝑤DRT(𝑡) = 1
𝜎𝑡 (𝑡)2 + 1 . (5.20)

Using multiple importance sampling, we improve variance at negligible extra cost4.

5.4.5 Preserving linear time complexity

Path replay backpropagation (Section 5.2.2) can estimate derivatives in linear time. It
is desirable that our method preserves this property. Unfortunately, if Equation (5.11)
were used as stated, our estimator would require an additional estimate of incident illu-
mination 𝐿𝑖 (𝑡 ′). This is because the distance 𝑡 ′ sampled by our estimator differs from the
distance sampled to build the path; thus, path replay does not provide the needed value
𝐿𝑖 (𝑡 ′). Estimating 𝐿𝑖 (𝑡 ′) under global illumination requires tracing a recursive path, re-
sulting in an overall O(𝑛2) cost when repeated at every bounce of the original path.

Instead, to maintain O(𝑛) cost, we select only a single bounce of the original path,
proportionally to the throughput Tr(𝑑) of the corresponding path segment, at which we
evaluate ⟨𝜕𝐿DRT

1𝑎 ⟩. To this end, we again use weighted reservoir sampling as the path
is traversed. The reservoir is updated with a probability proportionally to Tr(𝑑) and
records the segment index as well as the necessary state to spawn the recursive path.
4Since 𝑝DRT (𝑡) is unnormalized, variance reduction is neither guaranteed nor governed by the bounds
proven by Veach and Guibas [19]. Nonetheless, we observe significant variance reduction in practice;
see Figure 5.10d.

87

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

Due to spawning only a single recursive path, its resulting estimate must be weighted by
𝑤 =

∑𝑛
𝑑=0 Tr(𝑑) (the unnormalized inverse probability of being selected), where 𝑛 is the

path length. In Figure 5.8, we empirically validate that—while this optimization increases
gradient variance—it remains well below that of the free-flight based estimator.

5.5 Evaluation

We now turn to the evaluation of our proposed gradient estimator, validating its correct-
ness and efficiency. Our method will be used again in Chapter 10, where we will consider
an inverse volume rendering application, and how to avoid the inherent suboptimal local
minima.

5.5.1 Correctness and variance

Validation against finite differences. We have established that gradients computed
using free-flight sampling-based estimators can suffer from bias and high variance. Fig-
ure 5.8 provides empirical verification: we compare the mean gradients and their stan-
dard deviation computed by several methods on the same dense medium, lit by a realis-
tic high dynamic range environment map. Specifically, we compare reference gradients,
computed by brute force using finite differences (FD)—hence the low resolution—with
free-flight sampling, defensive sampling (Equation (5.9)), and two configurations of our
method: an O(𝑛2) implementation where our estimator is used at every path segment,
as well as our linear time variant.

As expected, gradients estimated using free-flight sampling exhibit bias in empty
regions (𝜎𝑡 = 0, striped area), as well as high standard deviation, manifesting as large
outliers, where density is low. Using defensive sampling helps eliminate the largest
outliers, but standard deviation remains high due to the mismatch between the sampling
density and integrand. Our estimator yields correct gradients as well as significantly
lower standard deviation in both the O(𝑛2) and O(𝑛) configurations.

Validation against analytic gradients. We further validate our method’s correct-
ness by comparing the computed gradient to analytic ground truth values in a simpli-
fied case. We consider a homogeneous, fully forward scattering, non-emissive, single-
scattering medium. The volume rendering equation (5.1) then simplifies to:

𝐿𝑖 (x,𝝎) =
∫ 𝑡𝑠

0
T(0, 𝑡) 𝜎𝑠 (𝑡) 𝐿𝑠 (𝑡,𝝎) d𝑡 + T(0, 𝑡𝑠) 𝐿𝑒 (𝑡𝑠). (5.21)

88

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

Scene FD Free-flight Defensive Ours (quadratic) Ours (linear) 1e-4

-1

0

1

Max std. dev.: 4.24e-05 5.83e-01 2.71e-04 1.26e-05 2.29e-05 1e-4 0

1

2

Scene FD Free-flight Defensive Ours (quadratic) Ours (linear) 1e-4

-1

0

1

Max std. dev.: 4.24e-05 5.83e-01 2.71e-04 1.26e-05 2.29e-05 1e-4 0

1

2

Scene FD Free-flight Defensive Ours (quadratic) Ours (linear) 1e-4

-1

0

1

Max std. dev.: 4.24e-05 5.83e-01 2.71e-04 1.26e-05 2.29e-05 1e-4 0

1

2

Scene FD Free-flight Defensive Ours (quadratic) Ours (linear) 1e-4

-1

0

1

Max std. dev.: 4.24e-05 5.83e-01 2.71e-04 1.26e-05 2.29e-05 1e-4 0

1

2

Figure 5.8: We validate gradients with respect to medium density 𝜎𝑡 in a synthetic scene (top left). The

mean gradient values (blue-red visualization) and standard deviation (purple-yellow visualization) are

shown for the slice 𝑧 = 15 of the dense 𝜎𝑡 3D parameter grid. Finite differences (FD) provide reference

gradient values, but cannot be used in the inner loop of an optimization due to the prohibitive runtime.

Using a free-flight sampling based estimator (Section 5.3.2) to estimate gradients results in bias where

𝜎𝑡 = 0 (striped area) and high variance where 𝜎𝑡 ≈ 0 (also shown in Figure 5.2). Defensive sampling (Sec-

tion 5.3.2) with 𝜖 = 0.1 mitigates the largest outliers, but does not eliminate the remaining variance. Our

novel sampling technique, whether used at each path segment (“quadratic”, Section 5.4.1) or once per

path (“linear”, Section 5.4.5) addresses both the bias and variance concerns.

89

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

Since the medium is fully forward scattering, 𝑓𝑠 (𝑥,𝜔,𝝎′) = 𝛿 (𝝎 − 𝝎′) and therefore
𝐿𝑠 (𝑡,𝝎) = 𝐿𝑖 (𝑡,𝝎):

𝐿𝑖 (x,𝝎) =𝜎𝑡 𝛼
∫ 𝑡𝑠

0
T(0, 𝑡) 𝐿𝑖 (𝑡,𝝎) d𝑡 + T(0, 𝑡𝑠) 𝐿𝑒 .

After an interaction within the single-scattering medium at 𝑡 , the ray continues with-
out further scattering, therefore 𝐿𝑖 (𝑡,𝝎) = T(𝑡, 𝑡𝑠) 𝐿𝑒 (𝑡𝑠). This drastically simplifies the
expression of incident radiance:

=𝜎𝑡 𝛼
∫ 𝑡𝑠

0
T(0, 𝑡) T(𝑡, 𝑡𝑠) 𝐿𝑒 d𝑡 + T(0, 𝑡𝑠) 𝐿𝑒

=𝜎𝑡 𝛼 𝐿𝑒

∫ 𝑡𝑠

0
T(0, 𝑡𝑠) d𝑡 + T(0, 𝑡𝑠) 𝐿𝑒

𝐿𝑖 (x,𝝎) =𝐿𝑒 T(𝑡𝑠) (𝜎𝑡 𝛼 𝑡𝑠 + 1) , (5.22)

which is easily evaluated in closed form.
We create a scene containing such a single-scattering medium with 𝑡𝑠 = 𝐿𝑒 = 1.

We then estimate density and albedo gradients using both the free-flight based estima-
tor (Section 5.3.2) and ours (Section 5.4.1). The results are plotted as a function of the
medium’s density value in Figure 5.9. While all methods match the analytic gradients
for all 𝜎𝑡 > 0, density gradients estimated with the free-flight estimator suffer from high
variance as 𝜎𝑡 approaches zero. Our estimator computes unbiased and low-variance gra-
dients.

Ablation study. We study the contribution of each component of our method in Fig-
ure 5.10. The test medium contains empty, thin, and dense regions, and is lit by a realistic
outdoor environment map. Given initial medium density (𝜎𝑡 (x), shown at the top left)
and albedo parameters, we estimate gradients with respect to 𝜎𝑡 (x) using different esti-
mators. Density is represented by a trilinearly interpolated dense grid with resolution
256 × 128 × 128 (more than four million parameters). We then visualize the standard
deviation of gradients w.r.t. each 𝜎𝑡 value in a 2D slice of that grid.

We observe a very large standard deviation in regions of low density when estimat-
ing gradients with the free-flight sampling-based estimator (a). Note that due to in-
scattering gradients being entirely missing in empty regions (𝜎𝑡 = 0, striped area denot-
ing bias), variance is artificially low. Our method (b) fully eliminates gradient outliers.
In regions where 𝜎𝑡 = 0, variance is moderately increased due to the (correct) inclusion
of the in-scattering gradient term. Reducing the sampling frequency from every path

90

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

10−3 10−2 10−1

Volume density σt (log scale)

−0.65

−0.60

−0.55

−0.50

−0.45

Gr
ad

ie
nt

w.
r.t

.v
ol

um
ed

en
sit

y
σ

t

−0.8

−0.6

−0.4

−0.2

0.0

0 2 4 6 8 10
Volume density σt (linear scale)

0.0

0.2

0.4

0.6

0.8

Gr
ad

ie
nt

w.
r.t

.v
ol

um
ea

lb
ed

o
α

Free-�ight Ours (linear) Analytic ground truth

Figure 5.9: In a single-scattering, fully forward scattering homogeneous medium, we compare the gradi-

ents computed by the standard free-flight based estimator and our method to the ground truth analytic

gradients. While all methods compute correct gradients in this setting for all 𝜎𝑡 > 0, we note once again
that free-flight based gradients suffer from high standard deviation as 𝜎𝑡 approaches zero (shaded area,

topmost plot). With our estimator, the standard deviation is low enough not to appear on the plots.

Albedo gradients are estimated correctly and efficiently by all methods (third plot).

91

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

segment to a single segment (c) brings our estimators’ complexity back to linear time
(Section 5.4.5), but also increases variance in regions of low throughput such as the center
of the dense smoke plume. However, this is corrected by combining our estimator with
regular free-flight sampling via multiple importance sampling (d) (Section 5.4.4). We
find that switching to an estimator based on residual ratio tracking (e) rather than ratio
tracking does not bring noticeable improvements. Likewise, increasing the medium’s
majorant from 1.01× to 10× the largest 𝜎𝑡 value does not significantly improve gra-
dient variance (f). In order to avoid the additional hyperparameter (medium control
density) and additional computation cost respectively, we recommend using differential
ratio tracking and a majorant of 𝜎 = 1.01 maxx 𝜎𝑡 (x).

5.5.2 Role of the optimizer

When optimizing over a large parameter space with noisy gradients, the choice of op-
timization algorithm (optimizer) has a significant impact on convergence. As we have
seen, gradients computed with free-flight sampling-based estimators are prone to large
outliers (Figure 5.10a). Using stochastic gradient descent, either with (SGDm) or with-
out momentum (SGD), these gradient outliers are almost directly reflected in the descent
steps. In practice, regions of the medium that should be fully empty end up being filled
with artifacts; see Figures 5.1, 10.4 and 10.6. The outliers occur frequently enough that
the optimization can never recover. In contrast, variance-adaptive optimizers such as
Adam [150] are effective at suppressing such outliers—to a perhaps surprising degree.
The outliers merely trigger correspondingly low step sizes. Because the outliers only
occur in regions where 𝜎𝑡 ≈ 0, the per-parameter step size being small in those regions
of the volume’s density grid does not prevent the rest of the medium parameters from
converging5. Altogether, optimizations converge to comparatively good solutions when
using Adam, despite the numerous outliers.

5.5.3 Implementation and performance

Compared with pure free-flight sampling in the path replay backpropagation frame-
work [21], our O(𝑛) algorithm requires tracing one additional recursive path for each
training path. Table 5.1 shows that the recursive path amounts to an overhead of ∼20%
5Note this is only possible because the grid-based parametrization used in our experiments maps parame-
ter space directly to world space. If the medium was defined as e.g. the result of a procedural computation,
the aggressive reduction of step sizes may slow or prevent overall convergence. Our method’s reduced
gradient variance is then even more advantageous.

92

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

0.0

0.5

1.0

1.5

2.0

1

2

3

4

5

6

7

8
1e−7

0.0

0.5

1.0

1.5

2.0

1

2

3

4

5

6

7

8
1e−7

0.0

0.5

1.0

1.5

2.0

1

2

3

4

5

6

7

8
1e−7

0.0

0.5

1.0

1.5

2.0

1

2

3

4

5

6

7

8
1e−7

0.0

0.5

1.0

1.5

2.0

1

2

3

4

5

6

7

8
1e−7

0.0

0.5

1.0

1.5

2.0

1

2

3

4

5

6

7

8
1e−7

0.0

0.5

1.0

1.5

2.0

1

2

3

4

5

6

7

8
1e−7

0.0

0.5

1.0

1.5

2.0

1

2

3

4

5

6

7

8
1e−7

0.0

0.5

1.0

1.5

2.0

1

2

3

4

5

6

7

8
1e−7

−

Figure 5.10: Ablation study. We compare the standard deviation of gradients with respect to the density

𝜎𝑡 of the medium shown in the top-left rendering. Inverse rendering of this medium is shown in Fig-

ure 10.6). The medium includes regions of high, low and zero density (bottom left). We show slice 𝑧 = 64
of parameter space. (a) As was seen previously (Figure 5.8), free-flight based gradients are prone to large

outliers where 𝜎𝑡 ≈ 0. Values outside of the visualization range are denoted in red. In regions where

𝜎𝑡 = 0 (striped area), the missing in-scattering gradients (bias) lead to artificially low standard deviation.

(b) Our unbiased differential ratio tracking estimator resolves both the bias and variance issues when

used on every path segment (leading to quadratic complexity). (c) Selectively using our estimator once

per path lowers the complexity back to linear time, but introduces additional variance in denser regions

where path throughput is lower. However, combining both techniques with multiple importance sam-

pling (d)makes up for it at virtually no cost. Finally, switching to differential residual ratio tracking (e) or
increasing the medium majorant tenfold (f) does not seem to significantly improve standard deviation.

93

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

Table 5.1: We report the median cost per training iteration (s/it) for vanilla path replay backpropaga-

tion [21] (free-flight) as well as with our proposed O(𝑛) sampling technique enabled. Our extension

involves tracing an additional recursive path, which amounts to a ∼20% overhead. To ensure the same

experimental conditions, both methods compute gradients w.r.t. the same starting medium, of which we

report the mean optical depth and maximum density. In practice, different optimization techniques lead

to different media, which additionally affects performance.

Optical depth Density 𝜎𝑡 Median runtime (s/it)
mean max Free-flight Ours

Dust devil 2.12 45.99 0.20 0.24
Red cow 2.45 12.87 0.32 0.37
Smoke plume 3.24 95.57 0.24 0.29

in our implementation, provided that both algorithms compute gradients w.r.t. the same
starting medium6. We report the median runtime per iteration on three different scenes
with different densities. One iteration includes the three steps of path replay backpropa-
gation described in Section 5.2.2, with next event estimation and a maximum path length
of 64. The timings were measured on an NVIDIA RTX 3090 GPU over 50 runs.

We implemented both methods in Mitsuba 3 [79]. Our implementation runs effi-
ciently in reverse-mode and on the GPU, making it possible to optimize many parame-
ters in parallel: the medium density 𝜎𝑡 is typically represented by a 256×256×256 dense
grid, and the single-scattering albedo 𝛼 by a 256×256×256×3 grid for a total of more
than 67 million parameters. It is therefore possible to optimize scattering volumes with
full unbiased global illumination, perhaps contrary to common belief.

Beyond important features such as next-event estimation, our implementation in-
cludes support for a spatially-varying majorant (to which our method is agnostic). Al-
lowing the majorant to vary on a coarse grid becomes important for performance when
the medium’s bounding box contains both very dense and very thin or empty regions.

Note that there remains room for optimization, for example using an adaptive voxel
grid to store medium properties, porting performance-critical functions to CUDA or
adaptively sampling primary rays based on the re-rendering error.
6In practice, different optimization techniques lead to different media, which additionally affects perfor-
mance as the number of path vertices increases with the density of the medium.

94

Chapter 5. Unbiased Inverse Volume Rendering with Differential Trackers

5.6 Conclusion

Among all methods for physically based differentiable rendering, volumetric represen-
tations have been particularly successful, due in part to their seemingly trivial differen-
tiability. Our work shows that severe issues persist in existing gradient estimation meth-
ods, leading to biased and high-variance gradients. Adaptive optimizers such as Adam
reduce the impact of poor-quality gradients, which may be the reason these issues were
not noticed at first. We present a simple, unbiased method tailored to the estimation of
gradients with respect to the parameters of scattering volumes. Our estimator retains
the linear time and constant memory complexity of the state-of-the-art differentiable
rendering algorithm [21], allowing the efficient estimation of gradients with respect to
millions of parameters in parallel.

We believe the development of new sampling techniques dedicated to gradients es-
timation is a highly promising direction for future work.

The method proposed in this chapter will be put into practice in Chapter 10, with a
challenging inverse volume rendering application. We will see how to leverage a non-
physical emissive volume model to bootstrap the optimization of scattering volumes,
thus avoiding suboptimal local minima.

95

Part II

Systems

96

6 | Systems for physically based dif-
ferentiable rendering

Relevant background: Section 2.3.

After establishing three methods to compute parameter gradients in reverse mode, we
turn to the design of systems allowing effective implementation and execution of those
algorithms.

6.1 Scale of rendering systems

Because they simulate the intricacies of the visual world, physically based rendering
systems tend to be large and complex: for instance, PBRT v3 [24] and Mitsuba 0.6 [26]
consist of over 60 and 180 thousand lines of C++ code, respectively. Industrial rendering
systems are larger still, with typical sizes on the order of one million lines of code.

Adaptability. Despite their size, these systems lack many features of growing impor-
tance: for instance, predictive rendering applications require that simulations correctly
account for the effects of both spectral transport and polarization. In theory, this is a
straightforward extension: one must simply replace RGB radiance and reflectance val-
ues with wavelength-dependent Stokes vectors and Mueller matrices and update a few
models that are directly affected by these phenomena, e.g. by switching from a spectrally
constant refractive index to Cauchy’s equation and adopting the complex-valued form
of the Fresnel equations. In practice, the modification changes the representation of
quantities central to any renderer, requiring a substantial redesign of the entire system.

Vectorized rendering. Vectorized rendering systems, such as MoonRay [155], Iray
[156] and Hyperion [157], leverage Single Instruction/Multiple Data (SIMD) units on
modern CPUs and GPUs to efficiently sample many light paths in parallel, thereby reduc-
ing the overall computation time. Efficient vectorization generally involves a mechanical
translation into a sequence of compiler intrinsics or specialized compiler infrastructure
to generate SIMD machine instructions, algorithms with improved coherence1, and data
structures arranged in structure of arrays (SoA) form. The latter requires transposing the
1i.e. regular control flow and memory accesses with spatio-temporal locality.

97

Chapter 6. Systems for physically based differentiable rendering

memory layout of the entire application, which constitutes another example of a highly
intrusive change to every system component. Designing vectorized renderers remains
a time-consuming endeavor—for instance, the MoonRay project marks the result of a
concerted four-year development effort of a team of engineers [155, 158].

6.2 Differentiating through renderers

Of particular interest to us are the challenges associated with the computation of deriva-
tives through complex physically based rendering algorithms.

Manual derivation. Li et al. [57] presented the first comprehensive technique for
differentiable rendering that accounts for all salient transport effects including discon-
tinuities. Its freely available implementation, Redner, reveals the inherent challenges of
realizing such systems: discontinuities aside, the basic loop of the underlying path tracer
(which would likely be realizable using at most 200 lines of C++ code in a “classical”
renderer) expands into approximately 3000 lines of hand-written derivative code parti-
tioned over multiple CUDA kernels that communicate through large groups of auxiliary
buffers. Adding a new model to the system entails manual differentiation of all rele-
vant expressions with careful consideration of what information must be cached when
and where, so that it can be passed from kernel to kernel during subsequent gradient
propagation passes. More advanced (but well-understood) bidirectional or volumetric
techniques present a formidable challenge in this context.

Existing AD frameworks. The systems presented in this thesis are related to tools
like TensorFlow [61] and PyTorch [159] but address fundamental problems that arise in
the context of rendering. Both PyTorch and TensorFlow provide two main operational
modes: eager mode directly evaluates arithmetic operations on the GPU, which yields
excellent performance in conjunction with arithmetically intensive operations like con-
volutions and large matrix-vector multiplications, both of which are building blocks of
neural networks. When evaluating rendering code created from much simpler arith-
metic, the resulting memory traffic and scheduling overheads induce severe bottlenecks.

The second operational mode requires an up-front specification of the complete com-
putation graph to generate a single optimized GPU kernel (e.g. via XLA in TensorFlow
and jit.trace in PyTorch). This is feasible for neural networks, whose graph specifica-
tion is very regular and typically only consists of a few hundred operations. Rendering
code, on the other hand, involves much larger graphs, whose structure is unpredictable:

98

Chapter 6. Systems for physically based differentiable rendering

program execution could jump to almost any part of the system when rendering a com-
plex scene. The full computation graph would simply be the entire codebase (∼100K
lines of code), which is of course far too big.

The Enoki library of Jakob [13], presented in Section 7.2.3, was designed to han-
dle the intricacies of physically based rendering and could be interpreted as a middle
ground between the two extremes discussed above. With Enoki’s lazy just-in-time (JIT)
compiler, graphs are created on the fly while simulating the process of scattering and
transport and tend to be several orders of magnitude larger compared to typical neural
networks. They consist mostly of unstructured and comparably simple arithmetic and
are lazily fused into optimized CUDA kernels. Since our system works without an up-
front specification of the full computation graph, it must support dynamic indirection
via virtual function calls that can simultaneously branch to multiple different imple-
mentations. The next chapter introduces Mitsuba 2, our retargetable primal and adjoint
renderer based on Enoki.

99

7 | Mitsuba 2

Relevant background: Sections 2.3, 2.5 and 2.6.

Mitsuba 2 is the result of a multi-year development effort from a number of contributors. Notably,

Prof. Wenzel Jakob was the project lead, and developed the Enoki library and many aspects of

Mitsuba 2. Delio Vicini and Tizian Zeltner were responsible for volume rendering and polarization

support respectively. Sébastien Speierer contributed to many features of the system, as well as sub-

sequent development.

(b)

(c) (d)

(a)

Figure 7.1: Four applications enabled by Mitsuba 2’s retargetable architecture. (a) Polarized spectral

rendering of an optical experiment that analyzes light with elliptical polarization. (b) A coherent MCMC

rendering algorithm that explores bundles of nearby light paths to improve convergence at equal render

time. (c) A refractive slab optimized by inverse rendering to focus light with three primary colors into

a rendition of the painting A Sunday Afternoon on the Island of La Grande Jatte by Georges Seurat. (d)
Reconstruction of a smoke volume from reference images; multiple iterations of the optimization are

shown. Applications (a) and (d) were investigated by Tizian Zeltner and Delio Vicini respectively.

7.1 Introduction

In the previous chapter, we have discussed the complexities inherent to both primal and
differentiable physically based rendering, which impose severe constraints on rendering
systems. We now propose Mitsuba 2, an open-source architecture for constructing ren-
derers that are intrinsically retargetable to these application domains. Mitsuba 2 takes
generic implementations of a set of standard components (e.g. rendering algorithms,

100

Chapter 7. Mitsuba 2

BSDF models, etc.), and lifts them onto a concrete set of types, systematically transform-
ing the underlying algorithms to enable a particular feature. Possible transformations
include changing the representation of radiance (e.g. to polarized spectra), generating a
“wide” renderer that operates on bundles of light paths using AVX512 vector instructions
or CUDA kernels, and automatic differentiation of the entire simulation. These trans-
formations can be chained, which further enriches the space of algorithms that can be
derived from a single generic implementation. Concretely, we propose a versatile frame-
work of composable types that exploit compile-time computation to retarget a complete
rendering system from a generic specification to concrete implementations suited to a
range of different tasks.

Novel applications enabled by our system are illustrated in Figure 7.1. Chapter 9
describes our method for creating gradient-index optics that focus incident illumination
into caustics that reproduce multiple user-specified images, as well as heightfield-based
caustic design. Chapter 11 leverages Mitsuba 2 to simultaneously recover the lighting
and material parameters of indoor scenes from real photographs. The open source im-
plementation of Mitsuba 2 is available at:

https://github.com/mitsuba-renderer/mitsuba2

Coherent rendering. The aspects of the system related CPU vectorization are omit-
ted from this thesis for the sake of brevity, please see the original article for details [14].
A Monte Carlo Markov Chain rendering technique that explores bundles of nearby light
paths to generate coherent work is additionally proposed.

7.2 Background

We start by reviewing the relevant technical background.

7.2.1 Template metaprogramming

The term metaprogramming refers to a broad range of techniques, in which a program
is able to rewrite its own structure (or that of another program) either statically at com-
pile time or dynamically during execution. Template metaprogramming (TMP) denotes
a static variant of this approach that was “discovered” in the early 1990s when it was
found that C++ templates could be used to perform Turing-complete computation dur-
ing compilation [160]. Initially considered a dangerous feature due to generally fragile
support and superlinear complexity of template expansion in early compilers, TMP has

101

https://github.com/mitsuba-renderer/mitsuba2

Chapter 7. Mitsuba 2

seen significant refinements and extensions in later revisions to the standard (C++11, 14,
17) that have elevated its status to that of a top-level language feature.

Mitsuba 2 performs nontrivial transformations of complete programs that would
generally require custom compiler infrastructure or tools for source code synthesis (in
particular, our requirements far exceed the capabilities of “generics” or “macros” avail-
able in languages such as Ada, Rust, and .NET). Even within C++, the specifics of our
design have only become possible due to extensions in the 2017 standard revision. For
this reason, we briefly review relevant features, and how they are used by our system.

Note that TMP usage mainly occurs within the internals of our system—rudimentary
familiarity with template concepts suffices when developing Mitsuba 2 code.

• Templates. Mitsuba 2 components are specified as generic C++ functions and struc-
tures parameterized by unknown target-specific types (e.g. the representation of
colors or floating point values) and / or constants (e.g. size or depth). For instance,
the fragment
template <typename Float> struct MicrofacetDistribution {

using Vector3f = Array<Float, 3>; /* ... */

};

declares a data structure parameterized by an arithmetic type (typename Float)
that is then used in the declaration of a more complex 3D vector type. In the
simplest case, Float could be an ordinary floating point value. More advanced
usage might involve types that perform arithmetic symbolically.

• Variadic templates are templates that accept an arbitrary number of arguments.
For example, the generic function
template <typename... T> auto f(const T&... args) {

return g(h(args)...);

}

rewrites function invocations of the form f(x1, x2, ...) into g(h(x1), h(x2),

...). We use variadic templates to realize virtual method calls (e.g. BRDF sam-
pling) on the various targets.

• Compile-time conditionals facilitate targeted removal of code fragments subject to
user-specified conditions. For instance, suppose that the nested block /* ...*/ in
the snippet
if constexpr (is_polarized_v<Spectrum>) { /* ... */ }

is only meaningful when dealing with polarized spectra, generating a compilation

102

Chapter 7. Mitsuba 2

error in the unpolarized case. To avoid this problem, the if constexpr statement
queries a type trait at compile time, excising the nested block in the negative case.

• Type computation. It is often difficult or impossible to define types of expressions
in a generic program. To address this flaw, modern C++ constructs enable type
specifications that are themselves the result of a compile-time calculation. For
instance, the snippet
A a;

B b;

using Value = decltype(a[0] + b[0]);

constexpr int Size = A::Size + B::Size;

Array<Value, Size> result = /* ... */;

computes the type resulting from the concatenation of arrays a and b, while apply-
ing standard promotion rules (combining int and float yields float, etc.). Here,
constexpr denotes computation to be performed at compile time, and decltype

returns the type of a nested expression without evaluating it.

7.2.2 Expression templates

Widely used numerical libraries such as Eigen [161] and Adept [162] rely on a technique
known as expression templates (ET) [163]. Mathematical expressions in these frame-
works return complex types that encode the sequence of operations needed for evalu-
ation rather than triggering evaluation immediately. This enables global optimizations
that would be unavailable when considering the operations individually.

We experimented with expression templates during the early stages of this project
but ultimately found them not to be a good fit for Mitsuba 2. The approach is ideal for
compact statements (e.g. simple matrix updates in the case of Eigen) but does not scale to
large expressions that encode complex functionality (e.g. a complete microfacet model
with visible normal sampling). Because ET cannot model variable reuse and common
subexpressions, the size of the expression templates tends to grow exponentially as a
function of the size of the program, which eventually prevents practical usage.

7.2.3 The Enoki library

Mitsuba 2 is built onto the Enoki library of Jakob [13]. For completeness and since its
components and interface are highly relevant to the design of Mitsuba 2, we review
them here—please see the original article for full detail [14]. Enoki is a template library

103

Chapter 7. Mitsuba 2

responsible for vectorization, JIT compilation, and program transformations. Intended
to be as general as possible, it does not contain any rendering-specific code. Its main
components are:

• A lazy just-in-time (JIT) compiler that symbolically executes arithmetic and con-
trol flow to generate computational kernels for later execution on a GPU.

• An efficient graph-based approach for simultaneous forward- and reverse-mode
automatic differentiation (AD) that seamlessly composes with other transforma-
tions.

• A simplification algorithm that periodically simplifies the graph data structure
used by automatic differentiation to reduce the memory usage of differentiable
rendering.

Static arrays. The fundamental building block of Enoki is a generic fixed-size con-
tainer Array<Value, Size>, whose default implementation intercepts and carries out
arithmetic operations component-wise by forwarding them to its elements (for instance,
a = b + c will be rewritten into a[i] = b[i] + c[i]). Its template parameter Value

could be an arbitrary data structure (e.g. a string), an arithmetic type, or another Enoki
array. These containers can be arbitrarily nested to create higher-order tensors, such as
a 4 × 4 × 8 × 𝑁 array containing a packet of 𝑁 spectral Mueller matrices that are each
sampled at 8 discrete wavelengths.

All arrays furthermore support implicit broadcasting, which suitably expands the size
of a tensor so that an operation can be carried out. This is particularly important where
vectorized and non-vectorized portions of the system meet. For instance, suppose that
the aforementioned higher-order tensor occurs in a product involving another Mueller
matrix or a discrete color spectrum. In such a case, Enoki inspects the types of the
involved operands at compile time to determine that a broadcast to dimensions (1,2) or
3 of the rank-4 tensor is necessary.

Enoki provides vertical and horizontal arithmetic operations that are each split into a
target-independent frontend portion responsible for broadcasting and type conversion,
and a target-specific backend portion. Vertical operations proceed component-wise and
produce a tensor of the same shape, while horizontal operations involve a reduction over
one or more dimensions, returning a tensor of lower rank.

Frontend. The frontend part takes two arguments of type T1 and T2, of which at least
one must be an Enoki array.

104

Chapter 7. Mitsuba 2

template <typename T1, typename T2, enable_if_array_t<T1, T2> = 0>

auto operator*(const T1 &a1, const T2 &a2) {

using E = expr_t<T1, T2>;

if constexpr (is_same_v<T1, E> && is_same_v<T2, E>)

return a1.mul_(a2);

else

return operator*(E(a1), E(a2));

}

The expression expr_t<T1, T2> uses TMP to compute the type E of an expression in-
volving a1 and a2, while accounting for steps such as type promotion and broadcasting.
This step is repeated recursively, until T1, T2, and E are all identical, at which point the
operation is forwarded to the backend method mul_().

CPUBackend. The default backend executes the operation on the desired target plat-
form, relying on a pattern matching mechanism known as partial specialization. A large
set of Array<Value, Size> specializations intercept certain combinations of Value and
Size that are natively supported. The pattern matching mechanism is recursive—arrays
with too large or odd sizes that prevent vectorization are partitioned into two sub-arrays,
whose larger part is a power of two, and the process repeats anew. This all happens
during compilation and hence incurs no runtime cost. At the time of writing, Enoki
provided backends for SSE4.2, AVX, AVX2, and AVX512 on Intel-compatible processors,
NEON on ARM processors, and a scalar fallback mode. Unlike manually vectorized code
that relies on compiler intrinsics, the combination of routing and partial specialization
makes algorithms developed in Enoki platform-independent (a similar goal is pursued
by ISPC [71]).

GPU backend (lazy JIT compiler). Another array type, GPUArray<Value>, provides
dynamically sized 1D arrays that are stored on a graphics card. A simple backend for such
an array could dispatch each arithmetic operation to a pre-compiled GPU kernel1, but
this leads to poor hardware utilization due to memory traffic (repeated reads and writes
of operands) and the large overhead of launching kernels for such a small amount of
computation. Consider the following simple program, which counts how many elements
of a randomly distributed set of points on [0, 1]3 fall within a sphere of radius one:
1This is in fact what frameworks such as PyTorch do by default.

105

Chapter 7. Mitsuba 2

1 using Float = GPUArray<float>;

2 using UInt64 = GPUArray<uint64_t>;

3 using Vector3f = Array<Float, 3>;

4 PCG32<UInt64> rng(arange<UInt64>(1000000));

5 Vector3f v(rng.next_float(), rng.next_float(), rng.next_float());

6 size_t inside = count(norm(v) < 1.f);

Here, lines 1-3 set up the necessary types, arange<UInt64>() in line 4 generates an in-
teger sequence with 1 million entries to select separate streams of a PCG32 random
number generator [22], and line 6 carries out a horizontal counting operation. PCG32
is a linear congruential generator, and operations involving it reduce to a sequence of
multiplications and bit-level manipulations (XOR, OR, shifts, etc.).

This example is extremely simple compared to a typical physically based shading
model, yet over 180 kernel launches would be needed to execute it using the previously
mentioned approach (56 for seeding the random number generators, 32 for each array of
samples, and 7 for the final count). While we could create specialized kernels that com-
bine some of these operations (e.g. to generate uniform variates), this approach clearly
does not scale to the complexities of an entire renderer.

Enoki’s solution to this problem is to perform arithmetic symbolically: the backend
merely records the desired sequence of operations, postponing evaluation of the kernel
for as long as possible. Only once we “peek” inside an array (e.g. in line 6 of the previous
example) is it necessary to actually compute its contents. The GPU backend exploits
this using a lazy tracing just-in-time (JIT) compilation approach. It outputs NVIDIA’s
Parallel Thread Execution (PTX) intermediate representation to construct a program in
single static assignment (SSA) form.

A subsequent compiler pass is then necessary to generate an executable kernel using
the native GPU instruction set SASS. The same pass also performs register allocation and
optimizations, such as common subexpression elimination and constant folding. Since
this is by far the costliest part of JIT compilation, the resulting kernels are cached and
reused if the same computation occurs again. This particularly helps when running an
iterative algorithm like stochastic gradient descent, in which case compilation typically
only needs to occur once during the first iteration.

Autodiff backend. Enoki’s last array type, DiffArray<Value>, enables transparent
forward and reverse-mode differentiation. Similar to autograd in PyTorch [62] or Stan [164],
gradient evaluation requires a declaration of relevant inputs followed by a statement that
triggers the graph traversal. Example usage is shown in Listing 7.

106

Chapter 7. Mitsuba 2

// Forward-mode AD:

using Float = DiffArray<float>;

Float in = 1.0f;

set_requires_gradient(in);

auto [out1, out2] = f(in);

forward(in);

float grad1 = gradient(out1);

float grad2 = gradient(out2);

// Reverse-mode AD:

using Float = DiffArray<float>;

Float in1 = 1.f, in2 = 2.f;

set_requires_gradient(in1);

set_requires_gradient(in2);

Float out = f(in1, in2);

backward(out);

float grad1 = gradient(in1);

float grad2 = gradient(in2);

Listing 7: Example usage of forward- and reverse-mode automatic differentiation with Enoki.

(a) Color image (b) Gradient image

Figure 7.2: Visualization of the gradient of an image with respect to the density of a participatingmedium,

computed using forward-mode automatic differentiation (red and blue encode positive and negative val-

ues, respectively). Figure by Delio Vicini.

Both forward and reverse-mode AD have useful applications in the context of render-
ing: the former to visualize gradients for a scene parameter (Figure 7.2), and the latter
to optimize a scene with respect to an objective function involving a rendered image
(Figure 7.1 (c, d)).

A DiffArray consists of two parts: a value that is used during the forward pass, and
a reference to a node in a separately maintained directed acyclic graph capturing the
structure of the computation. For example, for the multiplication c = a * b, the backend
creates a new node c referencing the operands:

107

Chapter 7. Mitsuba 2

a

b

c

a

b

Edges are weighted and store partial derivatives of the operation with respect to its
inputs—here, this is simply the product rule. Reverse- or forward-mode traversal entails
a sequence of multiply-accumulate operations to apply the chain rule. A reverse-mode
traversal of the above graph triggers two updates: da += b * dc and db += a * dc.

Automatic differentiation on theGPU. In practice, we generally combine the previ-
ously described array types by nesting them, making DiffArray<GPUArray<float>> the
basic “numeric” type for Mitsuba 2’s differentiable rendering mode. The combination
of a lazy JIT compiler with AD has interesting consequences: computation related to
derivatives is queued up along with primal arithmetic and can thus be compiled into a
joint GPU kernel2, leveraging subexpression elimination and constant folding to further
improve efficiency.

Masks. Vectorized algorithms process multiple elements at once, hence standard lan-
guage features like if statements are unsuitable for modeling their control flow3. Com-
parisons and other logical operations involving Enoki arrays thus produce masks (arrays
of boolean values). Masks are often used to select from one of two expressions using the
ternary conditional operator select(mask, expr_true, expr_false).

Horizontal operations. Horizontal operations involve a reduction over one or more
dimensions, returning a tensor of lower rank. Examples are logical reductions that can
be applied to masks (all(), any(), none(), count(), etc.) and arithmetic reductions for
standard arrays (horizontal sums, products, maxima, etc.). Their realization depends on
the target.

When working with GPU arrays, horizontal reductions are best avoided whenever
possible. Vertical operations are scheduled asynchronously and execute concurrently
2For example, if a forward computation evaluates the expression sin(x), the weight of the associated back-
ward edge in the computation graph is given by cos(x). The computation of both of these quantities is
automatically merged into a single joint kernel.

3A compiler frontend like ISPC [71] has an advantage here, since it can automate the conversion of con-
ditional statements to masks.

108

Chapter 7. Mitsuba 2

on the entire chip, which is key to their efficiency. In contrast, horizontal operations
create synchronization barriers that require all queued computation to finish before the
reduction can take place. They are also often unnecessary: for example, any(mask) is
almost certainly true if mask is a large array and the underlying condition is satisfied with
a nonzero probability. For this reason, Enoki provides logical reductions with a default
choice (e.g. all_or<true>) that takes precedence when targeting the GPU. Integrating
these improvements into the previous example addresses the discussed flaws.

Method dispatch. Indirect branches are a common feature of rendering code, for ex-
ample to sample the BSDF of an intersected shape:

SurfaceInteraction3f si = /* ... */;

BSDFSample3f bs = si.bsdf->sample(si, sample);

In a scalar program, this operation represents an ordinary virtual function call that re-
quires no special handling. Vectorization, however, turns si.bsdf into an array of point-
ers, that potentially refer to many different BSDF instances. Enoki intercepts such func-
tion calls by overloading the “->” operator and dispatches them using one method call
per unique pointer.

The details of this step vary depending on the target. On the GPU, Enoki issues a
horizontal operation to extract a list of unique pointers along with a list of indices per
pointer specifying what elements of the array refer to it. Following this, the argument
values associated with a particular instance are gathered, the function call is performed,
and results are scattered back into the output array. This is roughly equivalent to the
following pseudocode:

for (bsdf, indices) in partition(si.bsdf):

BSDFSample3f temp = bsdf->sample(gather(si, indices),

gather(sample, indices))

scatter(bs, temp, indices)

All three steps merely enqueue computation to be executed at a later point. Enoki uses
TMP to automatically rewrite the earlier virtual function call into this form, hence no
target-specific code is necessary. For differentiable arrays, Enoki automatically propa-
gates derivative information through virtual function calls.

Other features. Enoki’s autodiff backend includes an automatic graph simplification
algorithm, which periodically merges nodes and edges to reduce storage requirements.
This is crucial to the system’s scalability when attempting to perform inverse rendering

109

Chapter 7. Mitsuba 2

optimizations beyond trivial rendering resolution or scene complexity. A broad range
of mathematical functions, expressed using Enoki’s array types, is also provided. For
further details, please see the original article [14].

7.3 System design

We now turn to the design of Mitsuba 2 itself, which was influenced by three guiding
principles:

• No duplication. Special cases will inevitably arise during certain program transforma-
tions, we wish to support these without creating many special variants of an algo-
rithm.

• Unobtrusiveness. Several transformations discussed in Section 7.1 substantially in-
crease the size and complexity of an implementation, obscuring physical and algo-
rithmic concepts. We thus want development to take place at the input end of such
transformations. The development of generic algorithms should furthermore resem-
ble their “classical” counterparts as much as possible.

• Modularity. Physically based rendering systems admit a particularly modular archi-
tecture and are often partitioned into a large set of loadable plug-in modules that
implement materials, rendering algorithms, and so on. To support the same level of
modularity, our approach should be compatible with separate compilation of the var-
ious parts of the renderer.

As mentioned in Section 7.2.3, our system builds on top of Enoki. It implements a
complete rendering system designed for compatibility with the Mitsuba 0.6 [26] scene
description language, and replicates Mitsuba’s interfaces and plugins with suitable ab-
stractions that admit the discussed program transformations. Mitsuba 2 also provides
fine-grained bindings and utilities for prototyping forward and inverse rendering pipelines
in Python. We now examine the system’s architecture in more detail.

7.3.1 Architecture

Figure 7.3 illustrates the relationship of Mitsuba 2 (top, green) to Enoki (bottom, beige).
As described in Section 7.2.3, Enoki provides Array types that can be manipulated uni-
formly, as they expose the same interface. Operations on Enoki arrays are routed to

110

Chapter 7. Mitsuba 2

Routing layer

Scalar backend

Compiler intrinsics
(AVX512, Neon, etc)

CUDA backend

JIT compiler

Autodi� backend

Graph construction and
simplification

Float type
float, Packet<float>, Di�Array<…>

Spectrum type
Array<Float, 4>, Color<Float, 3>, MuellerMatrix<…>

Derived types & data structures
Intersection, sample record, etc

Perspective
sensor

Plastic
BSDF

Rough
conductor

BSDF

Path tracing
integrator

Area
emi�er

Environment
emi�er

Blackbody
spectrum

Retargetable plugins

Vector backends

Figure 7.3: Mitsuba 2’s components (top, green) are written as templates, which are then instantiated us-

ing Enoki types (bottom, beige) in order to automatically perform the supported program transformations.

various backends that efficiently realize arithmetic operations, vertical and horizontal
reductions, and virtual function calls.

Template parameters. In turn, the majority of Mitsuba 2’s components are written
as C++ templates, taking types Float and Spectrum as parameters. Selecting a particular
combination of Float and Spectrum types effectively retargets the entire system to use
the desired backend and color handling. Typical values for the template types include:

• Float: float or double for standard scalar operation, Packet<float> for CPU-
based vectorization (SIMD intrinsics), and CUDAArray<float> for JIT compilation
to CUDA kernels. Autodiff is enabled by further wrapping the Float type, e.g.
DiffArray<CUDAArray<float>>.

• Spectrum: Color3f for RGB rendering, Spectrum<Float, 4> for spectral color han-
dling with 4 spectral samples per ray, and MuellerMatrix<Spectrum<Float, 4>>

for polarized light simulation.

Data structures. Modern renderers use auxiliary data structures to facilitate com-
munication between different system components. This includes surface and medium

111

Chapter 7. Mitsuba 2

interactions, data structures for direct illumination and BSDF sampling, and so on. In
Mitsuba 2, these are declared as templates in order to permit retargeting. When appli-
cable, we template over a higher-level type such as Point, so that the data structure can
be retargeted in one more way: the dimensionality of world space (e.g. 2D, 3D or 4D).
For example, the renderer’s surface intersection data structure roughly looks as shown
in Listing 8.

In the structure’s declaration, all relevant types from 3D vectors to arrays of point-
ers, are then derived from the template parameters using Enoki’s helper type traits.
value_t<T> extracts the value underlying an array T, and replace_scalar_t<T, X> re-
turns an array of the same structure as T, but using a representation based on the (scalar)
type X. For instance, uint32_array_t<T> is an alias for replace_scalar_t<T, uint32_t>

and returns an unsigned integer version of the argument. The macro ENOKI_STRUCT al-
lows certain Enoki operations to be applied to the data structure itself, causing them to
recursively propagate through all fields.

template <typename Point3f> struct SurfaceInteraction {

using Float = value_t<Point3f>;

using Vector3f = Vector<Float, 3>;

using Frame3f = Frame<Vector3f>;

using UInt32 = uint32_array_t<Float>;

using Shape3f = replace_scalar_t<Float, const Shape<Float> *>;

Float t; // ray distance

Point3f p; // position

Vector3f wi; // incident direction

Frame3f sh_frame; // shading coordinate frame

UInt32 prim_id; // intersected primitive (e.g. triangle ID)

Shape3f shape; // pointer to Shape<..> instance

/// ...

};

ENOKI_STRUCT(SurfaceInteraction, t, p, wi, sh_frame, prim_id, shape)

Listing 8: Excerpt from Mitsuba 2’s SurfaceInteraction data structure. Its fields are typed using Enoki

array types, derived from the structure’s template type parameter.

Structure of arrays. This type of recursive lifting greatly facilitates tasks such as
switching data structures to a Structure of Arrays (SoA) representation. For this, we can
simply substitute a vectorized floating point type at the root level (e.g. Array<float,

112

Chapter 7. Mitsuba 2

16> or GPUArray<float>), letting the type system do the remaining work. Figure 7.4
illustrates the resulting memory layout for two example values of the type Float.

template <typename Float,
 typename Spectrum>
struct Ray {
 using Vector3f = Vector<Float, 3>;
 Float time;
 Vector3f direction;
 // ...
}

struct Ray

direction
x

y

z

Float = Packet<float>

V
ector backend

t

struct Ray

direction
x

y

z

Fl
oa
t
=
fl
oa
t

Sc
al

ar
 b

ac
ke

nd

Figure 7.4: Excerpt of Mitsuba 2’s Ray data structure, which is written as a generic struct. Depending on

the Float and Spectrum types, it will yield a standard scalar structure, a vectorized structure-of-arrays

(SoA) for use with SIMD instructions, a dynamically-sized SoA located in GPU memory, etc.

Plugins. Interfaces describing the (virtual) methods and attributes of all major scene
components, such as Emitter, Shape and Sensor are once again implemented as template
classes. Finally, plugins inheriting from the interfaces are implemented in individual
compilation units. The type parameters are passed to the parent interface, for example:
template <typename Float, typename Spectrum>

class AreaEmitter final : public Emitter<Float, Spectrum> {

// ...

}

MTS_EXPORT_PLUGIN(AreaEmitter, "Area light source")

The MTS_EXPORT_PLUGIN macro is responsible for explicitly instantiating the templates for
all combinations of the Float and Spectrum types that are currently enabled by the com-
pilation options. A larger excerpt from a plugin implementation is given in Listing 10,
and Figure 7.5 shows an example method’s instantiation to different backends.

113

Chapter 7. Mitsuba 2

Vector3f sample_ggx(const Point2f &sample, Float alpha) {
 auto [sin_phi, cos_phi] = sincos(2.f * Pi * sample.x());

 Float cos_theta = sqrt(1.f - sample.y() /
 ((sqr(alpha) - 1.f) *
 sample.y() + 1.f));

 Float sin_theta = sqrt(1.f - sqr(cos_theta));

 return { sin_theta * cos_phi,
 sin_theta * sin_phi,
 cos_theta };
} Generic Implementation

PTX Autodi�

.version 6.3

.target sm_75

.address_size 64

.visible .entry hydra_2440ed08(.param .u64 ptr,
 .param .u32 size) {
 .reg.b8 %b<33>;
 .reg.b16 %w<33>;
 .reg.b32 %r<33>;
 .reg.b64 %rd<33>;
 .reg.f32 %f<33>;
 .reg.f64 %d<33>;
 .reg.pred %p<33>;

 // Grid-stride loop setup
 ld.param.u64 %rd0, [ptr];
 ld.param.u32 %r1, [size];
 mov.u32 %r4, %tid.x;
 mov.u32 %r5, %ctaid.x;
 mov.u32 %r6, %ntid.x;
 mad.lo.u32 %r2, %r5, %r6, %r4;
 setp.ge.u32 %p0, %r2, %r1;
 @%p0 bra L0;

 mov.u32 %r7, %nctaid.x;
 mul.lo.u32 %r3, %r6, %r7;

L1:
 // Loop body

 // Load register %f10: alpha
 ldu.global.u64 %rd8, [%rd0 + 0];
 mul.wide.u32 %rd9, %r2, 4;
 add.u64 %rd8, %rd8, %rd9;
 ld.global.f32 %f10, [%rd8];

 mul.rn.ftz.f32 %f11, %f10, %f10;
 mov.f32 %f12, 0f3f800000;
 sub.rn.ftz.f32 %f13, %f11, %f12;

 // Load register %f14: sample.1
 ldu.global.u64 %rd8, [%rd0 + 8];
 mul.wide.u32 %rd9, %r2, 4;
 add.u64 %rd8, %rd8, %rd9;
 ld.global.f32 %f14, [%rd8];

 mul.rn.ftz.f32 %f15, %f13, %f14;
 mov.f32 %f16, 0f3f800000;
 add.rn.ftz.f32 %f17, %f15, %f16;
 div.rn.ftz.f32 %f18, %f14, %f17;
 mov.f32 %f19, 0f3f800000;
 sub.rn.ftz.f32 %f20, %f19, %f18;

 // Compute register %f21: result.2
 sqrt.rn.ftz.f32 %f21, %f20;

 // Store register %f21: result.2
 ldu.global.u64 %rd8, [%rd0 + 16];

 ...

 vmovaps zmm4, zmmword ptr [rsi+64]
 vpslld zmm5, zmm5, 29
 vmulps zmm6, zmm6, zmm7
 vpbroadcastd zmm7, dword ptr [rip+C_4]
 vfmadd213ps zmm6, zmm2, zmm2
 vpbroadcastd zmm2, dword ptr [rip+C_17]
 vptestnmd k1, zmm3, zmm2
 vblendmps zmm2 {k1}, zmm9, zmm6
 vpsubd zmm3, zmm7, zmm5
 vpbroadcastd zmm5, dword ptr [rip+C_18]
 vpandq zmm1, zmm1, zmm5
 vpxorq zmm1, zmm1, zmm2
 vmovaps zmm6 {k1}, zmm9
 vfmadd213ps zmm0, zmm0, dword ptr [rip+C_19]{1to16}
 vfmadd213ps zmm0, zmm4, zmm8
 vdivps zmm0, zmm4, zmm0
 vpandq zmm2, zmm3, zmm5
 vpxorq zmm2, zmm2, zmm6
 vsubps zmm0, zmm8, zmm0
 vsqrtps zmm0, zmm0
 vfnmadd231ps zmm8, zmm0, zmm0
 vsqrtps zmm3, zmm8
 vmulps zmm2, zmm3, zmm2
 vmulps zmm1, zmm3, zmm1
 vmovaps zmmword ptr [rdi], zmm2
 vmovaps zmmword ptr [rdi+64], zmm1
 vmovaps zmmword ptr [rdi+128], zmm0
 mov rax, rdi
 ret

sample_ggx:
 vmovaps zmm1, zmmword ptr [rsi]
 vmulps zmm1, zmm1, dword ptr [rip+C_0]{1to16}
 vandps zmm2, zmm1, dword ptr [rip+C_1]{1to16}
 vmulps zmm3, zmm2, dword ptr [rip+C_2]{1to16}
 vcvttps2dq zmm3, zmm3
 vpternlogd zmm4, zmm4, zmm4, 255
 vpsubd zmm3, zmm3, zmm4
 vpandd zmm5, zmm3, dword ptr [rip+C_3]{1to16}
 vcvtdq2ps zmm6, zmm5
 vpslld zmm7, zmm3, 29
 vcmpeqps k1, zmm2, dword ptr [rip+C_8]{1to16}
 vfnmadd231ps zmm2, zmm6, dword ptr [rip+C_5]{1to16}
 vfnmadd231ps zmm2, zmm6, dword ptr [rip+C_6]{1to16}
 vpxorq zmm1, zmm7, zmm1
 vfnmadd231ps zmm2, zmm6, dword ptr [rip+C_7]{1to16}
 vmulps zmm6, zmm2, zmm2
 vmovaps zmm6 {k1}, zmm4
 vmulps zmm4, zmm6, zmm6
 vbroadcastss zmm7, dword ptr [rip+C_9]
 vfmadd213ps zmm7, zmm6, dword ptr [rip+C_10]{1to16}
 vfmadd231ps zmm7, zmm4, dword ptr [rip+C_11]{1to16}
 vbroadcastss zmm8, dword ptr [rip+C_12]
 vfmadd213ps zmm8, zmm6, dword ptr [rip+C_13]{1to16}
 vfmadd231ps zmm8, zmm4, dword ptr [rip+C_14]{1to16}
 vmulps zmm4, zmm6, zmm8
 vbroadcastss zmm8, dword ptr [rip+C_15]
 vmovaps zmm9, zmm8
 vmovaps zmm9, zmm8
 vfmadd231ps zmm9, zmm6, dword ptr [rip+C_16]{1to16}
 vfmadd231ps zmm9, zmm6, zmm4 AVX512

'alpha'
#1

'sample.1'
#3

mul
#7 sub

#8

mul
#9

add
#10

div
#11

'sample.0'
#2

mul
#4

sin
#5

cos
#6

sub
#12

'result.2'
#13

mul
#14

sub
#15

sqrt
#16

'result.0'
#17

'result.1'
#18

Figure 7.5: Starting from an algorithmic template (shown: importance sampling a GGX lobe), our sys-

tem generates high-quality vectorized implementations for CPUs and GPUs. Further instrumentation in

Enoki tracks the computation graph and enables forward and reverse-mode automatic differentiation.

Variants. At runtime, users start by selecting a variant, i.e. a combination of Float and
Spectrum types with which to instantiate the renderer. This selection can be made using
a C++ helper macro which switches over all available variants, or more conveniently
through the Python bindings. The variant must have been enabled at compile time to
be available at runtime. Once a variant has been selected, instantiating a scene will
dynamically load the corresponding implementation or each plugin used in the scene.

A number of utility classes and functions, such as the Bitmap and Thread classes, are
not implemented as templates: their functionality, e.g. performing I/O operations, should
be the same regardless of the current variant.

7.3.2 Language bindings

Mitsuba 2’s focus on types has another less obvious benefit: they provide a rich de-
scription of structures and memory layout that enables high-quality language bindings.
We extended pybind11 [8]—itself based on metaprogramming—to create bindings from
one-line declarations of the form

module.def("func", &func);

A metaprogram then analyzes the function’s type to synthesize code that automatically

114

Chapter 7. Mitsuba 2

converts function arguments and return values. We used this approach to create fine-
grained Python language bindings of all major rendering system components for CPU
(scalar and vectorized) and GPU (vectorized differentiable) targets, enabling prototyp-
ing of complete rendering algorithms, e.g. using interactive Jupyter notebook sessions.
Enoki arrays also support implicit bidirectional conversion to other array libraries, such
as NumPy and PyTorch. The latter allows the renderer to be used as a differentiable layer
in a larger computation graph realized using PyTorch.

In fact, the optimization pipelines of Chapters 9 and 11 were all developed in Python
scripts that begin by loading an XML scene that specifies the starting point of the opti-
mization. The scene can be queried for differentiable parameters, some of which are sub-
sequently connected to an optimizer (SGD, Adam, etc.) along with standard or custom
loss functions. A short example of forward rendering via Python is shown in Listing 9.

import mitsuba

mitsuba.set_variant('scalar_rgb')

from mitsuba.core.xml import load_file, load_dict

scene = load_file('cbox/scene.xml')

integrator = load_dict({

'type': 'path',

'max_depth': 64,

})

image = integrator.render(scene)

Listing 9: Example usage of Mitsuba 2’s features through the Python language bindings. Almost all types

and functions are exposed, enabling rapid development of primal and inverse rendering algorithms.

7.3.3 Feature set

We used the abstractions of Enoki to implement a complete rendering system that in-
cludes (at the time of writing) a path tracer, volumetric path tracer, and adjoint light
tracer (all with multiple importance sampling). Our system supports standard light
sources (point, area, directional lights and environment maps) and both specular and
rough microfacet BRDFs with visible normal sampling [165] for conductors, dielectrics,
and plastic-like materials. As described above, each component of the renderer is com-
piled as a plugin (i.e. a shared library) that contains multiple instantiations of the tem-
plate (abstract implementation).

115

Chapter 7. Mitsuba 2

The renderer is spectral by default and uses Monte Carlo sampling to integrate over
continuous wavelengths spanning the 360 to 830nm range using 4 sampled wavelengths
per ray. A monochromatic mode is also available, which is mainly used in automated
tests, and for debugging. The transformation from RGB values (e.g. in texture maps)
to reflectance spectra relies on the vectorized spectral upsampling model of Jakob and
Hanika [29].

Three backends are available for ray tracing: scalar and packet tracing on the CPU
either use a built-in kd-tree or Embree [166], and ray tracing on the GPU relies on Op-
tiX [167]. The built-in kd-tree is useful for debugging, e.g. to render an image in double
precision which neither Embree nor OptiX support.

7.3.4 Challenges

During development, we encountered two standard constructions that require special
precautions. First, sampling code often relies on Newton or Newton-Bisection iterations
to numerically invert cumulative distribution functions (CDFs), whose inverse does not
have a closed-form expression. The iteration’s stopping criterion if (all(converged))

poorly interacts with the GPU backend, since this is a horizontal operation that would
serialize the computation at every step. In such cases, we determined4 suitable fixed
upper bounds for the iteration count that we use instead. A related example are discrete
CDFs inverted using a binary search, e.g. to pick rows and columns of an environment
map. Here, a tight bound is given by ⌈log2(𝑁 −2)⌉ +1, where 𝑁 is the number of entries.
Following this change, all Newton iterations or binary search steps are unrolled into the
current kernel.

For gradient-based optimization, we had to ensure that certain operations that nor-
mally run as a pre-processing step before rendering begins are recorded in the compu-
tation graph. An example is the computation of smooth shading normals from vertex
positions. One is a function of the other, hence it is important to accurately capture
their relationship during optimization. Our system provides reconstruction filters (e.g. a
Gaussian or Mitchell-Netravali filter), whose contribution to the image is differentiable
with respect to the position of a sample. This is necessary e.g. to optimize the shape of
caustics due to chains of purely specular transport, which will be the focus of Chapter 9.
4There are “only” 4 billion single precision floating point values, and it is normally possible to test all of
them in a few minutes.

116

Chapter 7. Mitsuba 2

7.4 Evaluation

We delay evaluation of the differentiable aspects of the system to the inverse render-
ing applications of Chapters 9 and 11. Please refer to the original article [14] and its
supplemental material for a more complete evaluation.

Example plugin implementation. For qualitative evaluation, Listing 10 shows an
excerpt from the standard diffuse BSDF model implemented in Mitsuba 2. Beyond the
template parameters and a small number of macros, the implementation looks strikingly
similar to standard C++ physically based rendering code, e.g. from Mitsuba 0.6 [26]. The
complexity is successfully encapsulated in the type system and the Enoki library.

Comparison to Redner. The performance of our JIT-compiled kernels for differ-
entiable rendering is competitive with hand-written derivative code: in particular, we
found, at the time of writing, that Mitsuba 2 was typically faster than Redner, the open
source implementation of the method by Li et al. [57] (Table 7.1).

Table 7.1: Timing comparison against Redner when optimizing diffuse appearance model parameters.

Special handling of discontinuities was disabled in both renderers to only benchmark the differentiable

parts of the problem. Additional information on this comparison can be found in the supplemental ma-

terial of the original article [14]. For benchmarks that include the effects of visibility, please refer to the

article of Loubet et al. [112].

Number of Parameters Redner Mitsuba 2

Cornell box 5 × 3 0.3553 s/it 0.3140 s/it
Textured monkey 512 × 512 × 3 0.2280 s/it 0.1501 s/it
Textured monkey 1024 × 1024 × 3 0.2293 s/it 0.1503 s/it
Textured sphere 512 × 512 × 3 0.1991 s/it 0.1132 s/it
Textured sphere 1024 × 1024 × 3 0.1998 s/it 0.1133 s/it

7.5 Conclusion

Physically based rendering is the result of a complex interplay involving countless dif-
ferent system components. Similar to how a photon can interact with distant parts of
a large and detailed scene, program execution in a renderer tends to take twisty paths
through immense codebases, whose size is measured in multiple hundred thousand lines

117

Chapter 7. Mitsuba 2

template <typename Float, typename Spectrum>

class SmoothDiffuse final : public BSDF<Float, Spectrum> {

public:

MTS_IMPORT_BASE(BSDF, m_flags, m_components)

SmoothDiffuse(const Properties &props) : Base(props) {

m_reflectance = props.texture<Texture>("reflectance", .5f);

// ...

}

Spectrum eval(const BSDFContext &ctx, const SurfaceInteraction3f &si,

const Vector3f &wo, Mask active) const override {

// ...

Float cos_theta_i = Frame3f::cos_theta(si.wi),

cos_theta_o = Frame3f::cos_theta(wo);

active &= cos_theta_i > 0.f && cos_theta_o > 0.f;

UnpolarizedSpectrum value = m_reflectance->eval(si, active)

* math::InvPi<Float> * cos_theta_o;

return select(active, unpolarized<Spectrum>(value), 0.f);

}

// ...

MTS_DECLARE_CLASS()

private:

ref<Texture> m_reflectance;

};

MTS_IMPLEMENT_CLASS_VARIANT(SmoothDiffuse, BSDF)

MTS_EXPORT_PLUGIN(SmoothDiffuse, "Smooth diffuse material")

Listing 10: Excerpt from the C++ implementation of Mitsuba 2’s diffuse BSDF plugin.

118

Chapter 7. Mitsuba 2

of code. But simply rendering an image is often not enough—depending on the applica-
tion, the entire process needs to be very accurate, very fast, or differentiable (or worse,
several of the above). Such requirements imply painstaking global transformations into
highly specialized implementations that are challenging to understand and maintain.

These challenges motivate the design of our system: the combination of generic al-
gorithms and composable compile-time transformations of types enable development at
a high level of abstraction. Without code duplication, our system is then able to gener-
ate high-quality scalar, vector and GPU implementations with competitive performance.
Another type of transformation changes the representation of radiance, making light
transport effects like polarization considerably easier to support. Finally, Enoki’s lazy
JIT compiler and automatic differentiation support unlock a path to straightforward con-
version of any rendering algorithm or appearance model into an optimization technique
for solving associated inverse problems.

Limitations. A number of limitations and open questions remain: due to our reliance
on deeply nested templates, error messages provided by the compiler can be cryptic.
During development, we address such problems by performing a scalar-only build of
the renderer—once this succeeds, the other variants should follow suit, assuming that
the transformations themselves are correct. C++20 introduces a feature named concepts

that will likely address this problem more elegantly. Mitsuba 2 code also requires a
conversion of conditional statements into masks, which can be tedious when a model
requires intricate conditional logic.

Despite the optimizations pursued in our system and the Enoki library, reverse-mode
automatic differentiation significantly increases the amount of application state, and pa-
rameters like resolution, sample count, and the number of passes, require careful adjust-
ment to avoid out-of-memory errors. Furthermore, our GPU backend renders images
using a sequence of separate kernel launches that exchange information through global
memory, which causes large communication-related overheads.

Extensions. Systems like OptiX that compile an entire renderer into a single “megak-
ernel” avoid this type of overhead, although their increased register usage tends to im-
pede the latency-hiding ability of modern GPUs [168]. We currently unroll loops and
recursive algorithms, which is likely not always ideal. The automatic translation of the
wavefront-style rendering algorithms of Mitsuba 2 into efficient megakernels, including
differentiation, is the subject of Chapter 8.

119

Chapter 7. Mitsuba 2

Impact. Mitsuba 2 has already proven to be a helpful tool for researchers in computer
graphics and computer vision, being successfully deployed in at least 72 published works
at the time of writing (e.g. [130, 135, 169]). We believe that its applicability extends to
many other areas (e.g. design or architecture) that optimize geometry or materials to
achieve a goal that can be specified as a differentiable algorithm.

120

8 | From wavefront to megakernel

Relevant background: Section 2.5, Chapters 4 and 7.

Mitsuba 2, presented in the previous chapter, is a highly flexible architecture for retar-
getable physically based rendering. Combined with Enoki’s autodiff backend, it enables
applying automatic differentiation through the entire light transport simulation, includ-
ing virtual function calls. However, this fully AD-based approach quickly shows its
limit as the rendering resolution or scene complexity increases. Indeed, the large mem-
ory footprint of the AD graph forces users to split computation into multiple passes,
drastically slowing down each iteration of e.g. inverse rendering optimizations.

M
egakernel

M
egakernel

M
egakernel

…

M
egakernel

Megakernel

…

Light rays

Wavefront

Light rays

Automatic

conversion

Camera sampling

Emi�er evaluation
GPU

memory
BSDF sampling

…

Figure 8.1: Mitsuba 2’s operates in wavefront mode: relatively small kernels advance all rays in lockstep,

and output the new state of the program to global memory. This allowed us to amortize the cost of main-

taining AD data structures over a large number of rays. With radiative backpropagation, usage of AD can

be limited to small, self-contained functions, which makes it possible to move to megakernel-style ren-

dering. We propose a simple modification of Enoki’s JIT compiler to automatically translate Mitsuba 2’s

components into primal and adjoint kernels that can then be attached to an OptiX megakernel.

In Chapter 4, we introduced radiative backpropagation, an adjoint method that refor-
mulates the gradient estimation problem as a modified light transport integral. In turn,
this enables a much more localized application of AD. Since the bulk of the computation
graph is replaced by radiative backpropagation, the memory footprint is correspond-
ingly much lower. Most importantly, radiative backpropagation admits a megakernel-
style implementation. This chapter describes modifications of Mitsuba 2 enabling an
automatic translation from wavefront to megakernel-style rendering, leading to perfor-
mance improvements of up to 1000×.

121

Chapter 8. From wavefront to megakernel

8.1 Wavefront rendering in Mitsuba 2

Enoki’s lazy JIT. As described in Chapter 7, Mitsuba 2’s GPU targets perform arith-
metic and other operations via Enoki’s CUDAArray<T> type, which lazily fuses operations
into larger kernels for later execution on the GPU. For example, line 3 of the C++ frag-
ment:

1 using Float = enoki::CUDAArray<float>;

2 Float a = /* .. */, b = /* .. */;

3 Float c = a * b;

does not immediately perform a multiplication but rather records that a multiplication
should take place when its evaluation can no longer be postponed. Note that a, b, c
would typically have millions of entries—one per wavefront element, which typically
correspond to light rays.

Certain operations create barriers that force the system to close and emit a fused
kernel using NVIDIA’s PTX intermediate assembly language that is then compiled to
machine instructions and executed. An example of this is ray tracing via the OptiX
framework, which requires concrete ray origins and directions rather than symbolic
descriptions. Communication between separate kernels occurs by reading and writing
large GPU-allocated arrays. These expensive memory operations, as well as their large
footprint, often become the main bottlenecks of this wavefront-style rendering.

Autodiff in wavefront-style rendering. In Mitsuba 2’s AD-based modes, the arith-
metic types are furthermore wrapped into DiffArray<T>, which realizes forward- and
reverse-mode differentiation on top of T. In the following example,

using Float = enoki::DiffArray<enoki::CUDAArray<float>>;

Float a = /* .. */, b = /* .. */;

Float c = a * b;

enoki::backward(c);

operations involving Float variables are recorded in a transcript, or computation graph,
used for reverse-mode traversal in enoki::backward(). Because DiffArray<T> carries
out its arithmetic via the underlying type T, additional AD-related arithmetic is also fused
into PTX kernels. While the above examples were extremely simple, the same principles
hold for larger system components: when the system evaluates a rough dielectric mi-
crofacet model or samples a direction from an environment map, the implementations
return immediately, having recorded their operations symbolically in both AD transcript

122

Chapter 8. From wavefront to megakernel

and fused PTX.
One serious problem with this approach is that the reverse-mode propagation via

enoki::backward() must occur all the way at the end of differentiable rendering, and
the transcript thus becomes very long. Furthermore, ray tracing and virtual function
calls constitute two sources of frequent barriers that require flushing queued operations.
As a consequence, temporaries and other variables required by enoki::backward() can
no longer retain their symbolic form—they are evaluated and stored in GPU-resident
arrays. Memory capacity and bandwidth remain limiting factors despite the periodic
graph simplifications carried out by Enoki.

In the following, we propose a small modification to Enoki’s JIT compiler enabling
the generation of functions that are usable in a megakernel setting, and which avoids
these memory-related issues.

8.2 Megakernel translation

We propose a practical and efficient way to implement radiative backpropagation. Build-
ing on top of Mitsuba 2, we use the tracing JIT compiler described above to produce both
primal and adjoint shaders of individual system components (e.g. BSDFs, light sources,
volumes, etc.) that can then be attached to scene objects in OptiX to enable efficient
GPU-accelerated radiative backpropagation. In effect, our system automatically trans-
lates a wavefront-style renderer to a megakernel at runtime (Figure 8.1). This approach
consumes no extra memory for differentiation apart from a single array that is used to
store gradients. Section 8.3 demonstrates the superior performance and scalability of
this design compared to Mitsuba 2’s AD-based backend.

8.2.1 Wavefronts and megakernels

Seen from a high level, wavefront-based rendering systems propagate a set of rays in
lockstep, using large memory regions to record their current state during this process.
Separate steps of the algorithm (ray tracing, scattering, direct illumination sampling,
etc.) are implemented as relatively small and independent kernels that parallelize over
the wavefront and mutate its state in global memory.

As the name suggests, a megakernel instead consists of a single large kernel that
includes all components of the original rendering algorithm. This kernel processes one
light path at a time, generally using processor registers rather than global memory to
record its state. Many instances of this megakernel execute concurrently and asyn-

123

Chapter 8. From wavefront to megakernel

chronously. Wavefront and megakernel-based rendering each have distinct advantages
and disadvantages—we refer to Laine et al. [168] for a thorough discussion. The recent
emergence of GPUs with hardware-accelerated ray tracing functionality has tipped the
scales towards the latter approach, since they are highly optimized for megakernels. In
fact, NVIDIA’s OptiX library [167] uses a megakernel architecture.

Note that Mitsuba 2’s approach to differentiable rendering, described in Chapter 7,
would not have been practical to implement as a megakernel due to the need to maintain
and traverse a transcript, which involves a graph and numerous auxiliary data structures
including red-black-trees and multiple hash tables. Mitsuba 2 uses wavefronts, i.e. vec-
torial AD, precisely to amortize the runtime cost of maintaining these data structures,
which is impossible in a megakernel because each element is processed individually.

8.2.2 Transitioning to a megakernel

We observe that our radiative backpropagation algorithm, presented in Chapter 4, be-
haves mostly like a path tracer: all remaining challenges related to differentiable ren-
dering have been pushed into the “effective emission term” Q of Equation (4.1). If this
function could somehow be turned into a “shader” that requires no access to dynamic
AD-related data structures, then standard tools for megakernel-based rendering (e.g. Op-
tiX) would be applicable.

Motivated by this idea, we decided to convert Mitsuba 2 from a wavefront architec-
ture into a megakernel, while at the same time adding adjoints of all relevant system
components referenced in Q (emitters, BSDFs, participating media). If carried out man-
ually, both are complex changes that would require a substantial redesign of the system1.

In its normal mode of operation, the JIT compiler records a symbolic representation
of each instruction until a synchronization point triggers evaluation, at which point
queued computations are compiled and executed on the GPU. We instead build on the
JIT compiler of Enoki to automatically perform this transformation. Our approach is
based on a simple modification of this scheme: we simply interrupt the process fol-
lowing code generation and return a string representing the generated program (using
NVIDIA’s PTX intermediate representation) rather than executing it. These functions
can then be attached to scene objects and will trigger computation following ray inter-
sections (in OptiX terminology, this is called a “closest hit program”). This is illustrated
1We note that source transformation-based AD tools such as ADIFOR [170] or Tapenade [171] could in
principle perform the latter step, but their restriction to FORTRAN / plain C fragments makes them
challenging to reconcile with the highly object-oriented nature of modern renderers.

124

Chapter 8. From wavefront to megakernel

in Figure 8.2. In the end, the only manual CUDA implementation remaining is the ra-
diative backpropagation code itself which pulls these fragments together, representing
less than a thousand lines of code for the surface case. Listing 11 shows how the primal
evaluation routine of a BSDF can be extracted using this simple recording mechanism.

Megakernel

PTX
Camera sampling

R
ec

or
di

ng

Outputs

Placeholder inputs

Emi�er evaluation

R
ec

or
di

ng

Outputs

Placeholder inputs

BSDF sampling

R
ec

or
di

ng

Outputs

Placeholder inputs

Emi�er plugins

BSDF plugins

PTX

PTX

Figure 8.2: We modify Enoki’s JIT compiler to extract the PTX representation of individual functions

rather than appending them to a kernel and launching it on the device. The functions to be extracted

are executed on placeholder inputs of size 1, so that the resulting code can be seamlessly called from an

OptiX-style megakernel renderer.

Listing 12 shows how adjoints can be extracted using the same mechanism, which
entails four additional steps:

1. Declaration of an additional input: the gradient w.r.t. the output of the primal func-
tion.

2. Declaration of differentiable parameters, causing subsequent arithmetic from e.g.

bsdf.eval() to be recorded onto the AD transcript.

3. Reverse-mode traversal via enoki::backward(). This step is also symbolic and
appends further instructions to the recording.

4. Recording of an atomic instruction (enoki::scatter_add()) that will accumulate
the resulting gradient(s) into the vector 𝜹x.

125

Chapter 8. From wavefront to megakernel

1 // Declare inputs that act as placeholders

2 SurfaceInteraction3f si = enoki::zero<SurfaceInteraction3f>();

3 Vector3f wo = enoki::zero<Vector3f>();

4

5 enoki::start_recording("bsdf_eval");

6

7 // Execute BSDF sampling routine *symbolically*

8 Spectrum result = bsdf.eval(si, wo);

9

10 // Declare inputs and outputs. The PTX string will then expose

11 // the recorded computation as a function with these arguments

12 enoki::set_inputs(si, wo);

13 enoki::set_outputs(result);

14 enoki::stop_recording();

15

16 // ... record other functions ...

17

18 const char *ptx_string = enoki::ptx_module();

Listing 11: We automatically transform Mitsuba 2 from a wavefront renderer into a megakernel-based

architecture. To do so, we make a small modification to Enoki’s lazy just-in-time compiler that allows

it to briefly pause execution while recording all operations involving GPU arrays into a PTX instruction

sequence. This sequence can subsequently be extracted and attached to scene objects. The above example

extracts the evaluation routine of a BSDF.

The resulting code fragment provides an efficient sparse implementation of the 𝜹𝑥 +=

adjoint([[q(z)]], gradient) operation discussed in Section 4.3. Importantly, the
machinery of reverse-mode AD is used during code generation, but is no longer needed
at evaluation time.

8.3 Performance evaluation

We compare radiative backpropagation’s runtime, using the megakernel implementa-
tion described in this chapter, to Mitsuba 2’s AD backend on four typical applications
of differentiable rendering in Figure 8.3. For a given sample count, we run at least 10
iterations and measure the median runtime. We then report the relative speedup of each
variant over Mitsuba 2. Ray tracing was performed by OptiX on the GPU in both cases.

We observe two performance regimes: at low sample counts, even though the full
wavefront and AD transcript fit in memory, a constant performance offset arises due to

126

Chapter 8. From wavefront to megakernel

1 // Declare inputs that act as placeholders

2 SurfaceInteraction3f si = eknoki::zero<SurfaceInteraction3f>();

3 Vector3f wo = ek::zero<Vector3f>();

4

5 // The gradient of the function's output

6 // is an input of the adjoint

7 Spectrum grad_output = ek::zero<Spectrum>();

8

9 // Reference to a BSDF parameter (e.g. roughness)

10 Float ¶m = /* .. */;

11

12 eknoki::start_recording("bsdf_eval_d");

13

14 // We want to keep track of derivatives wrt 'param'

15 eknoki::set_requires_gradient(param);

16

17 // Evaluate the BSDF symbolically & record a transcript

18 Spectrum result = bsdf.eval(si, wo);

19

20 // Backpropagate 'grad_output' to 'param'

21 eknoki::set_gradient(result, grad_output);

22 eknoki::backward<Float>();

23

24 // The derivative shader only has inputs and accumulates

25 // its outputs into a global array storing parameter gradients

26 eknoki::set_inputs(si, wo, grad_output)

27 eknoki::scatter_add(/* |𝜹x| entry */, eknoki::gradient(param));

28

29 eknoki::stop_recording();

Listing 12: We furthermore use Enoki to differentiate components of the renderer via reverse-mode AD,

recording the resulting instruction sequence symbolically. The resulting “adjoint shaders” operate with-

out access to AD-related data structures and atomically accumulate gradients with respect to inputs into

a global array.

127

Chapter 8. From wavefront to megakernel

architectural characteristics described in Section 8.2.1 (wavefront versus megakernel).
At higher sample counts, Mitsuba 2’s AD approach quickly saturates the available GPU
memory, and its computation must therefore be split into several passes. In that regime,
we obtain a linear speedup of up to three orders of magnitude. As was already seen in
Section 4.4.2, biased variants of our method achieve the highest speedup per iteration,
while simultaneously improving convergence in most cases. These benchmarks were
run on an NVIDIA 2080 Ti GPU with 12GiB of RAM.

1 2 4 8 16 32 64 128 256 512
Samples per pixel

0×

5×

10×

15×

20×

25×

12
×

8×

5×

3×

2× 2× 2× 2× 2× 2×

13
×

8×

5×

3×

2× 2× 2× 2× 2× 2×

20
×

17
×

11
×

7×

5× 5× 5× 5× 5× 5×

27
×

21
×

15
×

11
×

7×

8× 9× 9× 8× 8×

(a) Cornell box (all materials differentiable).

1 2 4 8 16 32 64 128 256 512
Samples per pixel

0×

100×

200×

300×

400×

500×

600×

700×

53
3×

27
5×

18
0×

93
×

47
×

49
×

47
×

45
×

43
×

40
×

66
1×

34
2×

23
0×

11
8×

59
×

60
×

58
×

56
×

53
×

50
×

56
6×

29
8×

20
5×

10
4×

52
×

54
×

51
×

51
×

48
×

45
×

72
3×

37
9×

25
7×

13
2×

66
×

68
×

64
×

63
×

59
×

56
×

Relative speedup
Ours
Ours (biased II)
Ours (biased I)
Ours (biased I+II)

(b) Figure 4.1 scene, involving complex light transport.

1 2 4 8 16 32 64 128 256 512
Samples per pixel

0×

20×

40×

60×

80×

100×

24
×

16
×

7×

5× 5× 5× 5× 5× 4× 4×

25
×

17
×

8×

5× 5× 5× 5× 5× 5× 5×

93
×

70
×

38
×

29
× 31
×

33
×

34
×

35
×

31
×

31
×

99
×

92
×

52
×

41
× 44
× 48
× 50
× 51
×

45
×

46
×

(c) Optimization of spatially-varying albedo of a

homogeneous medium

1 2 4 8 16 32 64 128 256 512
Samples per pixel

0×

200×

400×

600×

800×

1000×

45
1×

32
7×

40
2×

28
2× 31

2× 35
4×

34
0× 38

2× 40
5× 45

4×

52
2×

36
3×

48
6×

26
9×

34
3× 38

5×

40
1× 42

6× 44
7× 51

1×56
5×

39
8×

54
6×

34
5×

51
3×

58
0× 60

8× 65
0× 70

3×

78
6×

66
1×

44
4×

60
8×

50
1×

60
6×

69
6×

70
6× 72
4× 87

2×

99
2×

(d) Recovering the density of a smoke plume via

differentiable volumetric path tracing.

Figure 8.3: We evaluate the relative performance of our method to Mitsuba 2’s autodiff-based backend.

For each sample count, we time at least 10 iterations of a realistic optimization. We then report the ratio

of median iteration runtimes. Radiative backpropagation is up to three orders of magnitude faster.

128

Chapter 8. From wavefront to megakernel

8.4 Conclusion

The large memory consumption of AD graphs in Mitsuba 2 proved to be its largest limit-
ing factor when going beyond low-resolution or low-complexity inverse rendering appli-
cations. The radiative backpropagation algorithm replaces most of the AD graph with an
algorithm akin to path tracing. Usage of automatic differentiation is pushed to smaller,
self-contained functions such as BSDF and emitter evaluation. In order to fully exploit
this new flexibility without having to re-implement all system components, we modi-
fied Enoki’s JIT compiler to extract both primal and adjoint kernels from the relevant
Mitsuba 2 plugins at runtime.

This megakernel-style radiative backpropagation implementation achieves speedups
of up to three orders of magnitude when compared to Mitsuba 2’s AD backend, at a
fraction of the GPU memory consumption. Furthermore, we preserved the flexibility and
extensibility of Mitsuba 2: new components can be added as plugins, and the derivatives
will be automatically computed locally by AD just as before.

Limitations. There are several limitations to our approach: when components of the
renderer execute loops, we can only extract a correct instruction trace if the length of
this loop is known or can be bounded. Fortunately, this is the case for standard loop
constructs found in renderers: for instance, the number of steps needed for hierarchical
sample warping or bisection of a discrete CDF is related to the resolution of the under-
lying distribution and thus exactly known, and root-finding techniques such as Newton
iterations can be bounded with a conservative iteration count (see Section 7.3.4).

Since we effectively unroll all computations during the JIT recording step, our ap-
proach is suboptimal for long-running loops. In fact, the heterogeneous volume sam-
pling code of Mitsuba 2, which relies on a ray marching loop, generated an unrolled
kernel of more than 10MiB of PTX source. When added to the OptiX megakernel, compi-
lation exhausted the system memory and eventually led to a crash. As a workaround, we
selectively re-implemented the relevant loop in CUDA while still relying on automatic
extraction of the remaining heterogeneous medium-related functionality (e.g. trilinear
interpolation of medium parameters like 𝜎𝑡).

Like normal rendering, radiative backpropagation is “embarrassingly parallel”, and
can thus be parallelized over many cores of CPUs/GPUs or even multiple machines. One
potential issue in this context is that adjoints of shaders atomically accumulate gradients
into a set of global variables, which can lead to memory contention. Allocating dedicated
memory regions for each core that are merged at the end of the adjoint phase could

129

Chapter 8. From wavefront to megakernel

potentially alleviate such resource conflicts. In practice, we found atomic operations to
be surprisingly fast (at least on the NVIDIA GPU used for testing), and contention to
be limited in the case of textured or volumetric parameters, since the accumulation is
spread over many variables.

Impact. Our approach to megakernel generation in Enoki served as a starting point
for the Dr.Jit [80] library. Dr.Jit fully automates and generalizes the kernel extraction
technique presented in this chapter, and adds support for key features such as symbolic
execution of loops. This effectively removes the limitation mentioned above. Dr.Jit is
the foundation for Mitsuba 3 [79], which prominently features the radiative backprop-
agation algorithm and megakernel execution in order to address all AD-related perfor-
mance limitations found in Mitsuba 2.

In future work, the performance characteristics of the new system should be thor-
oughly examined to identify the new bottlenecks. For example, we may find register
spilling to be an issue in larger kernels with many intermediate results. Dr.Jit allows
users to manually introduce kernel boundaries, but automatically determining the op-
timal kernel size is highly challenging, as it likely changes with the register count and
memory bandwidth of the underlying hardware.

130

Part III

Applications

131

Over the course of Parts I and II, we have built algorithms and systems dedicated to
the correct and efficient estimation of gradients with respect to scene parameters in the
presence of global illumination, complex material models, and participating media.

This capability unlocks a wide range of applications, from object & scene reconstruc-
tion, to augmenting artist workflows for asset creation, to broader scientific applications
such as microscopy and atmospheric science. In the following chapters, we showcase
three such applications.

Chapter 9 demonstrates how AD-based differentiable rendering can be used to opti-
mize the surface of a slab of glass so that it projects a desired caustic pattern or picture
as light refracts through it. In Chapter 10, we reconstruct the spatially-varying density
and albedo of complex participating media. Finally, we recover high-resolution materials
and emission characteristics of indoor scenes from real-life photographs in Chapter 11.

132

9 | Caustic optimization

Relevant background: Section 2.6 and Chapter 7.

Despite the limitations discussed in Chapter 3, automatic differentiation remains a highly
useful tool for differentiable rendering—at least in low-complexity scenes where the
memory usage does not become prohibitively high. Mitsuba 2, presented in Chapter 7,
provides end-to-end automatic differentiation support, which greatly facilitates experi-
mentation on gradient-based applications. In this chapter, we present two methods for
computational caustics that optimize either the geometry of a glass slab or the index
of refraction of a gradient-index lens so that they project a desired image onto a target
surface. The corresponding experimental configurations are shown in Figure 9.1.

Projected causticOptimized geometry

Directional area light

(a) Optimizing surface displacement

Optimized gradient-index lens

Directional area lights

(b) Optimizing gradient-index optics

Figure 9.1: We showcase two material design and reconstruction applications that optimize (a) a refrac-
tive height field focusing collimated illumination into a desired image on a target surface; and (b) a cube
with spatially-varying index of refraction that propagates light along curved rays, encoding two separate

images for illumination arriving from perpendicular directions. Illustration by Tizian Zeltner, reproduced

from [14].

9.1 Surface displacements

In this first application, the surface of a slab of glass is optimized as a high-resolution
height field, modifying it until the light from a collimated light source passing through it
is focused into the desired caustic pattern. A fixed camera observes the pattern projected
onto a diffuse plane and compares it to a goal image.

133

Chapter 9. Caustic optimization

Related work. A similar problem setting has been studied by Papas et al. [172], who
used a decomposition of Gaussian kernels and Yue et al. [173], who solve a sequence of
Poisson problems to construct a smooth height field. Schwartzburg et al. [174] used a
tailored optimization formulation based on optimal transport. In contrast, our method
simply entails implementing the forward simulation in Mitsuba 2, and optimizing the
relevant parameters using the computed gradients.

Rendering algorithm. We render caustics using a unidirectional light tracer (also
called particle tracer) rather than a path tracer. Indeed, we assume a collimated light
source, which has a delta (or very narrow) directional distribution. Using path tracing,
paths started from the camera and being refracted by the optimized lens surface would
reach the light source at the right angle with a vanishingly small probability. Next-event
estimation, which samples a refraction direction according to the emitter’s distribution,
would also fail as the glass surface’s BSDF is equally narrow.

Using light tracing, paths are started from the light source, traced in the collimated
direction, refracted by the lens, and hit the (large) diffuse plane with high probability.
Finally, using next-event estimation, a connection is made from the diffuse plane to the
camera, which always succeeds. Note that this method is unbiased, and converges well
enough that we do not need to resort to approximations such as photon mapping.

Differentiable image formation. For AD-based optimization, using a differentiable
image reconstruction filter is crucial to capture the relationship between the lens’ geom-
etry and the final brightness and position of the various parts of a caustic. In particular,
a discontinuous “rectangle” or “box” filter will not yield any gradient w.r.t. the lens’ sur-
face heightfield. The relationship between the heightfield and each pixel of the rendered
image is as follows:

1. At the intersection point between the light ray and the lens surface, the surface’s
normal direction is computed as a function of the heightfield displacement values.

2. The refracted ray direction is computed as a function of the surface normal.

3. The refracted ray intersects with the diffuse receptor plane, participating in the
creation of a caustic pattern. The local intersection point with the plane is com-
puted as a function of the ray direction. The amount of reflected radiance is also
affected by the incident angle via the foreshortening term (cos𝜃).

134

Chapter 9. Caustic optimization

4. A path segment is sampled explicitly to connect with the sensor. The specific
intersection point between the ray and the image plane is computed as a function
of the position of the ray origin on the diffuse plane.

5. Finally, the path’s radiance is added to the image, weighted by the reconstruc-
tion filter. Here, the weights from a constant box reconstruction filter would be
constant w.r.t. the intersection point on an image plane. This is why it is crucial
to use a differentiable, non-unit filter such as a Gaussian kernel to maintain the
continuous relationship between heightfield and final image values.

Results. Figure 9.2 (a-c) shows three results and intermediate optimization states for
displacement-based caustics. While these results do not match the quality of a purpose-
built system in terms of contrast and precision, its ease of use is appealing: the only re-
quirement is a suitable forward simulation implemented in our AD-based system, which
can then be optimized using a variant of gradient descent. The method’s generality
makes it immediately applicable to broader settings. For instance, in Figure 9.2 (c), the
optimization generates geometry that blends primary colors from multiple light sources
in the right proportions to create a color image.

Experimental conditions. We optimize the lens heightfield using the SGDm opti-
mizer over 350 iterations. At each iteration, we render a 512 × 512 image with 120 sam-
ples per pixel and compare it to the goal image via a scale-independent 𝐿2 loss function.
Gradients are estimated with 20 samples per pixel. The heightfield is initialized to 0 (flat
lens surface), with a resolution increasing from 32 × 32 to 1024 × 1024 over the course
of the optimization.

Limitations. Note that discontinuities such as the edges of the receptor plane or the
camera’s field of view, or due to total internal reflection, were not accounted for in our
experiment. While we believe these do not play a significant role in the end result, a
thorough evaluation should be conducted in future work.

We also attempted optimizing both sides of the glass slab but found the resulting
caustics to have worse contrast and detail. The issues persisted in various optimization
schemes, such as optimizing the two sides in sequence or assigning a lower resolution to
one of them. Finally, we did not attempt to control stray light: paths that are redirected
out of the field of view during optimization will no longer produce any gradient and
therefore remain fixed.

135

Chapter 9. Caustic optimization
(a
)

(b
)

(c
)

(d
)

(i)

(e
)

(ii) (iii) (iv) (v)

Figure 9.2: We optimize (a–c) refractive height fields to focus collimated light into a desired image (Fig-

ure 9.1a), and (d–e) the spatially-varying index of refraction of a single gradient-index lens to project

different images when illuminated from two incident directions (Figure 9.1b). (i) starting from a uniform

solution that simply refracts light through, (ii–iii) the optimization quickly approximates the main fea-

tures of the target image (v). We render the final state (iv) after matching the emitters’ intensity, which

was not part of the optimization. The optimization targets used are the woodblock print “The GreatWave

off Kanagawa” by Hokusai, the ACM SIGGRAPH logo, the painting “A Sunday Afternoon on the Island

of La Grande Jatte” by Georges Seurat, a 1948 photographic portrait of Albert Einstein by Yousuf Karsh,

and a 1951 photographic portrait of Alan Turing by Elliot & Fry Studio.

136

Chapter 9. Caustic optimization

Figure 9.3: Example gradient-index lenses: the Maxwell fish-eye lens (left) images a point onto an an-

tipodal point, while the Luneburg lens (right) collimates incident light.

9.2 Gradient-index optics

Our second application concerns so-called gradient-index optics or “GRIN” lenses.

GRIN lenses. In materials with a varying index of refraction, light travels along curved
rays according to the Eikonal equation. Expressed as a second-order ODE [175], it relates
the change in position to the gradient of the refractive index:

d2x
d𝑡2 = 𝑛(x) ∇𝑛(x). (9.1)

Gradient-index optics exploit this effect to create lenses that lack the typical aberra-
tions of spherical lens elements. For instance, the (mostly theoretical) Maxwell fish-eye
lens with a radially symmetric index of refraction (𝜂 (𝑟) = 1/1+𝑟 2) or the Luneburg lens
(𝜂 (𝑟) =

√
2 − 𝑟 2) image a point onto an antipodal point or collimate it, respectively. Their

behavior is illustrated in Figure 9.3.

Algorithm. Integrating a differentiable ODE solving step in Mitsuba 2 is easy—we
reproduce the central solver loop used to create this result in Listing 13. Lines 6, 7, and
15 are the Leapfrog discretization of the Eikonal Equation (9.1), where fmadd denotes a
fused multiply-addition operation. Lines 8–11 keep track of which lanes have exited,
saving the final state when rays leave the material. Line 12 is the stopping condition,
written in such a way that the potentially costly horizontal reduction none(active) is
skipped as long as it is likely that at least one ray remains inside.

Results. Fabrication of materials with a varying index of refraction is an active area of
research [176] that could one day reduce the cost of current aspherical optics. Here, our

137

Chapter 9. Caustic optimization

1 Point3f p_out;

2 Vector3f v_out;

3 Mask active = true;

4 for (size_t i = 0;; ++i) {

5 auto [ior, ior_grad] = evaluate_ior(p, active);

6 Vector3f v_half = fmadd(.5f * step_size * ior, ior_grad, v);

7 Point3f p_next = fmadd(step_size, v_half, p);

8 Mask escaped = active && !is_inside(p_next);

9 active &= !escaped;

10 p_out[escaped] = p;

11 v_out[escaped] = v;

12 if (i >= 2.f / step_size && none(active))

13 break;

14 p = p_next;

15 v = fmadd(.5f * step_size * ior, ior_grad, v_half);

16 }

Listing 13: Enoki-based Eikonal equation solver with a “leapfrog” discretization.

differentiable renderer already provides a helpful tool for optimizing the properties of
such a material based on a user-specified objective function. Figure 9.2 (d–e) shows two
caustics that are simultaneously projected by a single gradient-index cube illuminated
from two perpendicular directions. Note that the discrete appearance of intermediate
optimization steps is due to the trilinear interpolation of refraction values, which causes
piecewise constant gradients in the ODE in Equation 9.1.

Experimental conditions. We optimize the spatially-varying index of refraction of a
glass cube using the SGDm optimizer over 500 iterations. At each iteration, we render
two 256× 256 images, one for each receptor plane, with 160 samples per pixel and com-
pare them to the two goal image via a scale-independent 𝐿2 loss function. The overall
optimization objective is simply the sum of the two. Gradients are estimated with 16
samples per pixel. The heightfield is initialized to 1.5 (corresponding to standard glass),
with a resolution increasing from 5 × 5 × 5 to 160 × 160 × 160 over the course of the
optimization.

138

Chapter 9. Caustic optimization

9.3 Conclusion

With minimal implementation effort, we obtain convincing results in two caustic design
applications, where existing methods typically require manual derivations and purpose-
built algorithms. Thanks to automatic differentiation, we can easily generalize our im-
plementation from relatively straightforward heightfield-based grayscale caustics; to
color caustics; to a GRIN lens projecting two different images at once.

Limitations. Unfortunately, the limitations of AD-based inverse rendering discussed
in Chapter 3 still apply. The rendering quality (image resolution and sample count),
as well as the overall runtime performance, were limited by the AD system’s memory
usage. Whenever possible, an adjoint method such as radiative backpropagation (Chap-
ter 4) should be preferred. In fact, Teh et al. [177] derived an adjoint method for differen-
tiable GRIN lens rendering, successfully reproducing the experiment of Section 9.2. They
also showcased applications to multifocal displays, optic fiber design, and fuel injection
scenarios.

Future work. Our experimental setup is idealized and does not account for important
real-life considerations such as manufacturability of the resulting lens, calibration of
the camera and light source, measurement error, the sensitivity of the lens to the focus
distance, the impact of stray light, etc.

Even in ideal conditions, the optimization problem remains highly non-convex. More-
over, first-order gradients and a pixelwise error function are not sufficient to handle cases
where bright regions of the caustic must be moved over large distances in image space—
the gradients are simply not informative enough.

Finally, broader applications such as automatic imaging lens design [129] and glare
minimization for architecture should be investigated.

139

10 | Inverse volume rendering

Relevant background: Section 2.2.3 and Chapter 5.

Participating media are known to be challenging to render—especially when they have
spatially varying densities and are highly scattering. Intuitively, this is due to the many
internal scattering events that need to be simulated in order to account for all of the
radiance propagating within the medium. Inverse rendering of such volumes, then, is all
the more difficult.

The algorithmic contributions of Chapters 4 and 5, as well as the systems work of
Chapters 7 and 8, enable us to tackle the inverse volume rendering problem. The combi-
nation of these tools makes it possible to support the full physically based light transport
simulation with scattering heterogeneous media in an efficient and unbiased way. As an
example, recovering the scattering coefficient of a dense, high-albedo cloud requires such
this accurate, physically based simulation. The reconstruction shown in Figure 10.1 hints
at applications of differentiable rendering in the fields of climate science.

In this chapter, we discuss remaining challenges and present reconstruction results
using the unbiased estimator of Chapter 5.

(a) Iteration 0 (b) Iteration 1000 (c) Iteration 12000 (d) Reference

Figure 10.1: We recover the spatially-varying density of a simplified version of theWalt Disney Animation

Studios cloud. The scene is lit by a realistic environment map with a sun ∼ 50000× brighter than the

surrounding sky, which makes even primal rendering particularly challenging.

10.1 Combating local minima

In Chapter 5, we have derived an estimator tailored to the estimation of gradients with
respect to heterogeneous medium parameters, eliminating the bias and variance found
in existing approaches. However, our experience shows that regardless of the estimator
used and the quality of the gradient estimates, inverse rendering of scattering media us-
ing gradient-based optimization may not always converge to a global minimum. We pro-

140

https://disneyanimation.com/resources/clouds/
https://disneyanimation.com/resources/clouds/

Chapter 10. Inverse volume rendering

pose leveraging nonphysical emissive volumes, whose convergence is better behaved, to
bootstrap the optimization of our scattering media.

Indeed, the problem can be alleviated by first training a simplified model with known
favorable convergence properties: a purely emissive and absorbing volume, similar to
concurrent work on voxel-based radiance fields [119] and inspired by neural radiance
fields (NeRF) [118]. We use the resulting densities to bootstrap our scattering volume
optimization, optimizing for the unknown scattering albedos and refining the density
values. Our experiments show empirically that this procedure results in significantly
more accurate reconstruction; see for example Figure 10.2.

(a) Ours (constant init.) (b) Ours (emissive init.) (c) Reference

Figure 10.2: (a) Using the differential ratio tracking technique of Chapter 5 significantly reduces gradient
variance, leading to a good reconstruction. (b) We further propose to initialize the scattering volume

optimization from the result of a nonphysical emissive volume optimization in the style of NeRF [118].

This helps overcome local minima, greatly improving the sharpness of the final model.

10.1.1 Source of local minima

Given the complexity of the reconstruction problem and the presence of many ambigui-
ties, it is understandable that the loss landscape may include many local minima. For an
intuitive example, consider the following situation: at a given stage of the optimization,
the objective function indicates that the brightness of a given pixel should be increased
to better match the reference image. At each point along the paths contributing to this
pixel, increasing local density increases in-scattered radiance at that point, but simulta-
neously reduces transmittance and therefore attenuates contribution from interactions

141

Chapter 10. Inverse volume rendering

− TargetResult

Figure 10.3: Regardless of gradient quality, inverse rendering is prone to difficult local minima. We com-

pute the value of the re-rendering loss as we interpolate from the result of an optimization (top left

image) to the ground truth value (top right image). While this is not an exhaustive exploration of the loss

landscape (the volumetric model comprises 16+ million parameters), it suggests the presence of a local

minimum.

further down the path. This delicate balance is captured by the terms of opposite signs
in the expression of the gradients (Equation (5.3) and Equation (5.4)):

𝜕𝜽𝐿𝑖 (x) =
∫ 𝑡𝑠

0
𝑇 (𝑡) 𝜕𝜽

[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

]
𝐿𝑠 (𝑡) d𝑡

−
∫ 𝑡𝑠

0
𝑇 (𝑡) 𝜎𝑡 (𝑡) 𝛼 (𝑡)

[∫ 𝑡

0
𝜕𝜽𝜎𝑡 (𝑡 ′) d𝑡 ′

]
𝐿𝑠 (𝑡) d𝑡 · · · (10.1)

In Figure 10.3, we plot the evolution of the objective function as we interpolate from a
converged optimization result to the ground truth solution. While this is not an exhaus-
tive exploration of the local neighborhood (impractical due to the millions of medium
parameters), it suggests the presence of a local minimum.

10.1.2 Emissive volume initialization

On the other hand, nonphysical emissive volume representations such as the one em-
ployed by NeRF [118] and subsequent works seem to converge to accurate solutions
without fault1. In our experience, this remains true when replacing the neural network
with a grid of interpolated values (similar observations were made by others [119, 178])
and, in our simple scenes, even when omitting directionally-dependent emission.
1Here, by “accurate” we mean low training error in image space. The correspondence of the reconstructed
volume to its true shape (test error) additionally depends on a sufficiently large number of training views
to constrain the problem sufficiently.

142

Chapter 10. Inverse volume rendering

Relying on this property, we propose the following simple two steps to optimize
scattering volume parameters. First, reconstruct a nonphysical emissive volume density
𝜎𝑡 and emission 𝐿𝑒 . This is expected to converge fast both in terms of iteration count
and runtime: the maximum path depth is one (no scattering) and variance is minimal.
Second, use the recovered density𝜎𝑡 to initialize the optimization of the physical medium
parameters 𝜎𝑡 and 𝛼 . The density 𝜎𝑡 will typically only require small adjustments—in
particular when low-order scattering is the dominant source of color—because of the
close resemblance between 𝐿𝑠 and 𝐿𝑒 in the radiative transfer equation (5.1). The albedo
𝛼 , on the other hand, is easy to recover because it linearly relates to pixel color; it is not
affected by the opposing gradients in Equation (10.1) that govern occlusion. We have
experimented with different ways of converting the previously optimized emission 𝐿𝑒

into initial albedo values to bootstrap the second optimization, but did not find it to
perform better than initializing albedo from a constant value, e.g. 0.6. All initializations
led to rapid convergence.

We found this two-step optimization to be particularly helpful for the inverse ren-
dering of dense objects: see for example the increased sharpness in Figure 10.2b.

Alternative initializations. One may consider initializing the density 𝜎𝑡 in the sec-
ond step from a number of other shape estimation techniques such as silhouette carving
[179], multi-view stereo [180], or COLMAP [181]. Unfortunately, many of these methods
are not designed for participating media or semitransparent objects. Even when recon-
structing just solid objects, the precise density values 𝜎𝑡 to extract from hard surfaces are
non-obvious. By bootstrapping from an emissive volume, despite it being nonphysical,
we directly obtain an interpretable 𝜎𝑡 value. Moreover, emissive volume optimization is
easily implemented as a special case of scattering volume optimization. Orthogonally,
reparametrizations leveraging similarity relations can be exploited to improve conver-
gence [103]. For surface reconstructions, VolSDF [182] could be substituted to the emis-
sive volume model for a higher fidelity initialization, at the cost of implementation com-
plexity.

10.1.3 Inverse volume rendering

Finally, we apply the combination of our differential ratio tracking algorithm (Chapter 5),
emissive volume-based initialization scheme (Section 10.1.2) and just-in-time compiled
megakernel inverse renderer (Chapter 8) to an inverse volume rendering application.

Given reference images and initial values for the medium properties of interest, we

143

Chapter 10. Inverse volume rendering

use gradient-based optimization to minimize a re-rendering objective function. Note that
our work focuses on the effective estimation of gradients: assembling a fully robust re-
construction pipeline using real-world, imperfect data has its own set of challenges (see
Chapter 11). Therefore, we use synthetic scenes with known camera parameters, illumi-
nation conditions, and isotropic phase function. Since we target non-emissive objects,
we only optimize for 𝐿𝑒 in our initial stage of fitting a nonphysical, emissive volume.
In the second stage of optimization, we set medium emission 𝐿𝑒 to zero and require all
color to originate from lighting and the reconstructed scattering albedo 𝛼 . Consistently
resolving the additional ambiguities and complexity brought by a real-world capture
setup is an important direction for future work, most likely involving domain-specific
assumptions and inductive biases. An interactive viewer showcasing the inverse render-
ing results in this chapter is accessible at:

https://rgl.epfl.ch/publications/NimierDavid2022Unbiased

Experimental conditions. We implemented a differentiable volumetric path tracer
with path replay backpropagation [21] in Mitsuba 3. Within the same codebase, we
compare the existing free-flight sampling-based gradient estimator with our differential
ratio tracking estimator (Chapter 5). As was noted in Section 5.5.2, the choice of opti-
mizer has a large impact on the reconstruction quality in the presence of high-variance
gradients. We run the optimizations using both stochastic gradient descent with mo-
mentum (SGDm) and Adam [150].

Unbiased global illumination is simulated using a path length of up to 64 vertices (al-
though there is no particular limit, as all evaluated methods have linear time complexity
in path length). The scenes are lit by realistic indoor and outdoor high dynamic range
light probes.

The optimization aims to minimize the 𝐿1 difference to 64 reference images, with
camera positions sampled uniformly in a circle around the object at random altitudes.
All optimizations were run for 6000 iterations. In each iteration, a batch of 32768 pixels
is sampled uniformly from the set of all pixels from all reference images. Primary rays
are then sampled from within the footprint of selected pixels.

In step (I) of path replay backpropagation (Section 5.2.2), the primal value is estimated
with 1024 samples per pixel, for a total of 33.5 million rays. The high-quality primal
estimate is used to compute the objective function. Steps (II) and (III) then use a second,
uncorrelated set of primary rays with 16 samples per pixel to estimate gradients.

In each experiment, the same learning rate is used for all estimators. This value must
be adapted to the specific scene’s physical scale and any factor applied to the medium

144

https://rgl.epfl.ch/publications/NimierDavid2022Unbiased

Chapter 10. Inverse volume rendering

density. Intuitively, a scalar factor applied to the 𝜎𝑡 values would be reflected in the
gradients, resulting in a different effective step size. In practice, we set the learning rate
to values in the ranges 5 · 10−2 to 5 · 101 for SGDm and 10−3 to 10−2 for Adam. It is
automatically set twice as high for the albedo parameters.

Results are shown at equal iteration counts across methods, as the runtime depends
not only on the chosen method but also on the state of the reconstruction itself2. Equal-
time results would therefore be difficult to interpret.

Several commonly used techniques further improve the quality of the results: the
optimization starts with 163 fewer parameters than the desired resolution. The grid
resolution is then doubled four times during the optimization (coarse-to-fine). When
using SGDm, the learning rate is multiplied by 4 at each upsampling step. Finally, the
learning rate is halved six times over the last quarter of the optimization.

Inverse rendering results. We showcase equal-iterations inverse rendering results
on three solid objects (Figure 10.4) and two complex heterogeneous participating media
(Figure 10.6). Quantitative results are shown in Figure 10.5 and Figure 10.7 respectively.
The free-flight sampling-based gradient estimator fails to converge on all scenes when
used together with SGDm (a). Using the Adam optimizer, high gradient variance man-
ifests instead as a persistent thin “haze” around the reconstructed volumes (b). These
artifacts are visible in the included color-mapped density slices and are best appreci-
ated by flipping back and forth between images; please see the interactive viewer linked
above. Defensive sampling (c), while eliminating the larger gradient outliers, does not
sufficiently reduce overall variance and therefore exposes the same issues in the recon-
structions.

Our proposed gradient estimator and initialization scheme achieve the best recon-
structions (d). The lowered gradient variance helps eliminate the haze-like artifacts
while the emissive initialization helps converge to sharper results (see also Figure 10.2b).
Note that the reproduction of hard surfaces with volumes could be improved by e.g. in-
corporating the non-exponential transmittance model of Vicini et al. [183].

Relighting. A great advantage of using a fully physically based and unbiased inverse
rendering method is that it yields inherently editable and relightable media. In Fig-
ure 10.8, we relight the reconstructed medium using an environment that was not seen
during optimization. As expected, the NeRF-style nonphysical emissive volume appears
2Denser media lead to more internal interactions, which increases overall runtime.

145

Chapter 10. Inverse volume rendering

(a) Free-flight
SGDm

(b) Free-flight
Adam

(c) Defensive
𝜖 = 0.1, Adam

(d) Ours
Adam

(e) Reference
1 of 64 viewpoints

Re
-r

en
de

re
d

𝜎
𝑡

sli
ce

s
(𝑧

=
11

5..
13

0)

0.0

0.5
1.0
1.5
2.51e2

Re
-r

en
de

re
d

𝜎
𝑡

sli
ce

s
(𝑧

=
17

0..
20

0)

0

1
2
34
61e2

Re
-r

en
de

re
d

𝜎
𝑡

sli
ce

s
(𝑧

=
12

0..
13

0)

0

1
2
3
5

1e2

Figure 10.4: Our method enables high-quality inverse rendering of complex objects under realistic illu-

mination. We compare inverse rendering results from different combinations of optimizer and gradient

estimators. (a) The high-variance gradients produced by the free-flight sampling-based estimator pre-

vent any convergence when optimizing with stochastic gradient descent with momentum. Continued in

Figure 10.5.

146

Chapter 10. Inverse volume rendering

0.725
0.750
0.775

Free-flight
Defensive
Ours

Constant init.
(SGDm)

Constant init.
(Adam)

Emissive init.
(Adam)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(f) Astronaut scene

0.725
0.750 Free-flight

Defensive
Ours

Constant init.
(SGDm)

Constant init.
(Adam)

Emissive init.
(Adam)

0.0

0.1

0.2

0.3

0.4

0.5

(g) Rover scene

0.28
0.29 Free-flight

Defensive
Ours

Constant init.
(SGDm)

Constant init.
(Adam)

Emissive init.
(Adam)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(h) Tree scene

Figure 10.5: Continued from Figure 10.4. (b) The Adam optimizer’s per-parameter adaptive step size sig-

nificantly reduces the impact of gradient outliers. Nevertheless, persistent haze-like artifacts remain

present at the end of optimization. They are also visible in the false-color density slice visualizations. (c)
Defensive sampling (Section 5.3.2) prevents large gradient outliers but otherwise introduces additional

variance, resulting in similar artifacts. (d) Our method uses a novel sampling scheme dedicated to the

adjoint to eliminate most of the gradient variance. Combined with our proposed emissive volume initial-

ization (Section 10.1), we achieve sharper reconstructions and eliminate haze artifacts. (f-h) Re-rendering
loss values for the three scenes of Figure 10.4. We report the mean absolute percentage error computed

on all 64 reference images after optimization.

147

Chapter 10. Inverse volume rendering

(a) Free-flight
SGDm

(b) Free-flight
Adam

(c) Defensive
𝜖 = 0.1, Adam

(d) Ours
Adam

(e) Reference
1 of 64 viewpoints

Re
-r

en
de

re
d

𝜎
𝑡

sli
ce

s(
𝑧
=

65
..9

5)

0

1
2
34
61e2

Re
-r

en
de

re
d

𝜎
𝑡

sli
ce

s
(𝑧

=
10

0..
13

0) 0.5

1.0
1.5
2.0
3.0

1e1

Figure 10.6: Our method enables high-quality inverse rendering of heterogeneous scattering and absorb-

ing media under realistic illumination. Continued in Figure 10.7.

148

Chapter 10. Inverse volume rendering

0.61
0.62
0.63

Free-flight
Defensive
Ours

Constant init.
(SGDm)

Constant init.
(Adam)

Emissive init.
(Adam)

0.00

0.05

0.10

0.15

0.20

(f) Janga smoke scene

0.23

0.24
Free-flight
Defensive
Ours

Constant init.
(SGDm)

Constant init.
(Adam)

Emissive init.
(Adam)

0.00

0.02

0.04

0.06

0.08

0.10

(g) Dust devil scene

Figure 10.7: Continued from Figure 10.7. We report the mean absolute percentage error computed on all

64 reference images after optimization for the two volumetric scenes of Figure 10.6.

149

Chapter 10. Inverse volume rendering

identical regardless of the surrounding illumination, which is incorrect3. On the other
hand, ours reacts appropriately to the new lighting conditions. Note that robustly dis-
entangling lighting and reflectance for fully accurate relighting is challenging in its own
right and likely requires observations under different lighting conditions.

(a) Environment illumination (b) Emissive (c) Ours (d) Reference

O
rig

in
al

lig
ht

in
g

Re
lit

O
rig

in
al

lig
ht

in
g

Re
lit

Figure 10.8: Nonphysical emissive volume models such as NeRFs [185] and Plenoxels [119] faithfully re-

produce the target object, but also “bake” the original lighting (a) into the model parameters (b). Using a
fully physically based volumetric model and inverse rendering pipeline, we obtain high-resolution density

and albedo medium parameters. These parameters have concrete physical meaning and are inherently

editable and relightable. When re-rendered in previously unseen lighting conditions, our optimized mod-

els (c) react correctly to the new illumination. Note that we did not attempt to model more complex

surface reflectance models (e.g. specular reflections), which are orthogonal to our method.

3At the time of writing, new learning-based methods are being developed for relightable NeRFs [184].
While plausible relighting may be achieved for opaque hard surfaces, correctly accounting for the many
internal scattering interactions in dense volumes seems out of reach of these methods for the time being.

150

Chapter 10. Inverse volume rendering

10.2 Conclusion

Combining the algorithmic contributions of Part I and the systems work of Part II, we
tackled a challenging application: unbiased inverse rendering of physically based partic-
ipating media. To complement the differential ratio tracking estimator of Chapter 5, we
proposed a simple way to leverage a nonphysical emissive volume model to bootstrap
the optimization of scattering volumes, thus avoiding suboptimal local minima.

Combined, our contributions allow the inverse rendering of challenging media and
surfaces, recovering high-resolution density and albedo parameters. The result is inher-
ently editable and relightable.

Future work. Our evaluation focuses on synthetic scenes with known camera pa-
rameters and illumination. We hope that our contributions can form a building block
for further applications, such as the inverse rendering of real-life scenes with imperfect
input and using complex appearance models.

Our experiments used a known, simple isotropic phase function. Introducing phase
function parameters to the optimization is orthogonal to our method, but can increase
the ambiguities and number of local minima. Furthermore, as shown by Zeltner et al.
[12] in the context of BSDF optimization, mismatches between the importance sampling
distribution derived for the primal and the value of the phase function gradients will
lead to significant variance. Here as well, special care must be taken if the pdf can be
zero where gradients are nonzero.

In applications where the availability of reference data is limited, such as cloud to-
mography [134], an interesting direction for future work would be to further utilize the
recovered emissive medium used in our initialization scheme. It may act as a proxy
model from which imperfect, but infinite reference observations can be generated.

In essence, the proposed initialization scheme post-processes a non-physical model
to introduce physical realism. Generalizations of this idea, e.g. progressively increasing
the maximum path depth over the optimization, should be studied in detail.

Finally, Azinović et al. [128] have found that allocating a high sample count to the
primal estimate results in better convergence. While most of our scenes benefited from
that same allocation, the challenging cloud reconstruction of Figure 10.1 did not accu-
rately capture the finer detail of the target cloud until at least 512 samples per pixel were
allocated to the estimation of gradients (phases II and III). More work is needed to de-
termine the optimal allocation in all scenarios, which will most likely be related to the
relative variance characteristics of the primal and adjoint problems.

151

11 | InverseRendering ofReal Rooms

Relevant background: Section 2.6 and Chapter 3.

Re-rendering, relighting, …Recovered materials and lighting

Optimizer

Gradients

Texture-space differentiable renderingPosed RGB frames

Reconstructed geometry

Figure 11.1: Given posed RGB frames and scene geometry, our method jointly reconstructs lighting

and material parameters of real indoor scenes. Our method relies on differentiable rendering, a new

texture space sampling scheme as well as carefully designed inductive priors to achieve high-quality

reconstruction at 4K resolution. The optimized material and lighting parameters are readily used in any

physically based graphics pipeline, enabling full scene relighting, re-rendering and AR / VR applications.

While Parts I and II were dedicated to building algorithms and systems to efficiently
estimate scene parameter gradients, many open-ended steps are necessary to success-
fully and robustly carry out inverse reconstructions from real-world data. This chapter
discusses a practical pipeline designed to achieve this goal, including a new sampling
technique, inductive priors, and carefully chosen modeling assumptions.

11.1 Introduction

Realistic reconstruction of real 3D environments is a major component of virtual world-
building. It enables various simulations, augmentations, as well as augmented and vir-
tual reality (AR/VR) applications, such as virtual object insertion, scene relighting, re-
rendering from novel views, and material editing. Computer vision techniques have
mostly relied on simple lighting, material and light transport models, that do not ac-
count for complex illumination, shadows, or view-dependent reflections (Figure 11.2).

With the recent popularity of inexpensive commodity RGB-D sensors and even mo-
bile LiDARs, incredible advances have been achieved for 3D geometry reconstruction

152

Chapter 11. Inverse Rendering of Real Rooms

Figure 11.2: Simplified solutions for scene reconstruction (left) typically model the world as emissive

surfaces without correctly accounting for light transport, and thus do not support important applica-

tions such as virtual object insertion and relighting. Our method (right) recovers emission and material

parameters of real-world scenes, which are readily used in photorealistic applications.

[186, 187, 188, 189]. For example, a complex room-scale scene geometry with high dy-
namic range (HDR) textures and semantic labeling can be fully reconstructed in high
quality [190]. However, recovering material or illumination properties requires a deeper
understanding of these captured scenes. Limited attention has been devoted to this type
of reconstruction, which is a key prerequisite for a seamless photorealistic experience
in the aforementioned applications.

Meanwhile, physically based rendering has been successfully used to produce pho-
torealistic imagery for movies, visual effects, and games. In Chapters 3 and 7, we in-
vestigated the usage of automatic differentiation to systematically compute derivatives
through the rendering process. Leveraging these rendering derivatives, the material and
lighting parameters are progressively improved using gradient descent.

Similar to other non-linear inverse optimizations, strong domain-specific inductive
bias and a carefully designed optimization routine are key to achieving robust and ef-
ficient convergence and high-quality results. For synthetic scenes with perfect geom-
etry and segmentation, the method of Azinović et al. [128] provides high-quality esti-
mates of the scene’s materials and lighting. However, only a limited number of proof-of-
concept results were shown for real-life captures, with reconstruction degraded quality.
As pointed out by the authors [128], imperfections in the input data can have a signifi-
cant impact on the quality of the recovered materials.

We propose a practical pipeline with several novel priors to robustly handle large
real-world captures and address various imperfections in the input data, such as missing

153

Chapter 11. Inverse Rendering of Real Rooms

reconstructed geometry, camera misalignment and unevenly distributed camera views.
In combination with our new texture-space optimization formulation, our method ro-
bustly recovers physically based spatially varying materials and lighting in large cap-
tured indoor environments, such as the Replica dataset [190]. This chapter’s contribu-
tion is a joint material and lighting reconstruction method that handles:

• imprecisely reconstructed or even missing geometry;

• large number of unevenly distributed live-captured views, with sensor noise, lens
distortion, etc;

• estimation of physically based material parameters (multi-lobe BRDF), including
high-resolution (4K) textures.

The output of our pipeline is a physically based scene representation using graphics
industry-standard formats, suitable for photorealistic relighting and re-rendering.

11.2 Related work

Beyond the differentiable rendering articles discussed in Section 2.6, we review work
specifically relevant to inverse reconstruction here.

Light estimation. Image-based lighting relies on a recovered high dynamic range en-
vironment map [191], which represents the illumination incident from every direction
at a single point in the scene, to realistically relight virtual objects at that location. The
recovered environment map can be further approximated with certain basis functions,
such as spherical harmonics [96, 192] or spherical Gaussians [193], for efficient render-
ing. Convolutional Neural Network-based approaches can also automatically estimate
an environment map from a single indoor image [194]. Other methods [193, 195] at-
tempt to reconstruct local spatially-varying lighting from a single image. Gardner et
al. [196] utilize a deep encoder network to recover parametric lighting in the scene. In
our method, lighting is represented locally as emission from surfaces that are physically
present in the scene, e.g. neon lights on the ceiling. The position and radiance of those
emitters are determined automatically through our optimization process.

Material recovery. Chen et al. [197] and Kang et al. [198] cast reflectance capture
into a form that admits a solution via deep networks. Encoder-decoder architectures are

154

Chapter 11. Inverse Rendering of Real Rooms

used for appearance capture and rendering of human faces [199], image-based relighting
from sparse samples [200], and appearance maps [201]. Deschaintre et al. [122] use
a differentiable re-rendering loss and procedurally generated materials to train a deep
network recovering SVBRDF parameters. Gao et al. [202] optimize directly in the latent
space learned by an auto-encoder, which acts as a regularizer. For more details, we refer
to the survey of Dong [203] on deep appearance modeling. To the best of our knowledge,
none of the existing methods handle non-Lambertian materials, spatially-varying local

illumination and global light transport all at once.

Material and shape recovery. Schmitt et al. [204] rely on a hand-held RGB-D scan-
ner with active illumination to the reconstruct the geometry and SVBRDF of a single
object. They use differentiable material clustering to improve the estimation of specu-
lar components. Several recent works [205, 206, 207] use deep cascaded architectures
trained on synthetic datasets to recover the shape and microfacet SVBRDF of a single
object from one or two handheld pictures. Li et al. [207] additionally account for global
illumination with dedicated neural blocks. In contrast, our method scales to large indoor
scenes with significant interreflection.

Joint estimation of material and lighting. Barron and Malik [208] recover geome-
try, reflectance, and illumination from a single image of an arbitrary object by enforcing
hand-crafted priors on each component. Li et al. [193] similarly recover depth, SVBRDF
and local illumination from a single viewpoint using a deep network trained on realistic
synthetic interior scenes. Karsch et al. [209, 210] render synthetic object into real photos.
Zhang et al. [106] achieve plausible results in recovering the reflectance of walls, floor,
and ceiling of indoor scenes along with lighting using inverse rendering.

Azinović et al. [128] took a step toward the general use of differentiable rendering
for reconstruction, though it remains far from achieving this goal for real captures with
imperfect input data. Our method builds on this approach while supporting complex
spatially-varying materials that are reconstructed from real captured data.

Intrinsic decomposition. Image-space methods [122, 208, 211, 212, 213] employ so-
phisticated data-driven approaches, by learning the distributions of material and illu-
mination. However, these methods do not have a notion of 3D geometry, and cannot
handle occlusion, interreflection, and physically based factors such as the squared dis-
tance falloff of light intensity. They also require a significant amount of training data,
and are prone to errors outside of the training data set.

155

Chapter 11. Inverse Rendering of Real Rooms

Deferred neural rendering. Deferred neural rendering [214] achieves novel view
synthesis, scene editing, animation synthesis, or free viewpoint relighting [215] by op-
timizing a neural texture jointly with a neural renderer. The high-dimensional neural
texture, mapped to a simple 3D proxy surface, is sampled as in the standard graphics
pipeline to produce features that are decoded into an image by the neural renderer. In
contrast, our method produces physically based textures that are readily used in tradi-
tional renderers.

Stratified sampling. Stratified sampling [23], discussed in Section 2.1.7, is a well-
known technique used in Monte Carlo rendering to reduce variance over purely uniform
sampling. In the context of non-line-of-sight geometry reconstruction, Tsai et al. [36]
sample over the surface of the recovered shape, in order to improve rendering efficiency
(fewer missed rays) as well as to produce more coherent ray bundles. In the same spirit,
our texture space sampling technique improves convergence by sampling uniformly in
the space of optimization variables rather than generating rays in camera space.

11.3 Method

In the same fashion as the caustic design and inverse volume rendering applications of
Chapters 9 and 10, our method uses an analysis-by-synthesis approach. At each step,
images of the current state of the scene are produced using differentiable rendering al-
gorithms and compared to the observed reference. The difference is then minimized
using gradient-based optimization. Figure 11.3 shows the high-level pipeline discussed
in the remainder of this section.

Unlike similar methods based on rasterization, our rendering step builds on a dif-
ferentiable path tracer and physically based appearance and illumination models. The
resulting images account for global illumination, which is a prerequisite for high-fidelity
parameter reconstruction, as illustrated in Figure 11.4.

11.3.1 Input data

The input to our method is a reconstruction of the scene geometry and a set of RGB
photographs with camera intrinsics and extrinsics (“posed frames”). We further use an
approximate segmentation of the scene’s surfaces, which can either be computed auto-
matically or provided as input. Our method reconstructs suitable material and lighting

156

Chapter 11. Inverse Rendering of Real Rooms

backpropagation
Mitsuba 2

ADAM

median

Geometry

RGB video frames

Initial albedo texture

UV map Inverse UV map

Scene parameters Gradients

Loss value

Surface segmentation

Camera poses

Reference pixel values

Primary rays batch

Di�erentiable rendering

Input data Computed Optimized

Figure 11.3: Our reconstruction technique uses differentiable rendering to recover complex spatially vary-

ingmaterials and light sources from posed handheld RGB frames. A novel texture-space sampling scheme

robustly handles uneven coverage and imperfections in real-world data.

parameters, but does not modify the input geometry. Joint material and geometry re-
construction is in principle possible [57, 112, 113], but adds implementation complexity
and runtime costs, and is therefore out of the scope of this work.

TheReplica dataset. We use the Replica dataset [190] in our examples, which consists
of multiple indoor scenes acquired using a handheld device. The capture was performed
by an operator walking through the scene, holding a specialized rig. The resulting data
was processed using standard methods producing camera extrinsics and intrinsics, a tri-
angular mesh of the scene, and an approximate instance segmentation. As with any
real-life capture, video frames must be corrected for camera calibration: color shift, vi-
gnette, and distortions are removed in a preprocessing step.

The dataset also includes a fused high-dynamic range (HDR) texture for each scene.
However, unlike our method’s results, that texture has all shadows, view-dependent
effects and global illumination “baked-in” and is therefore not suitable for relighting,
scene editing, realistic re-rendering with correct view-dependent effects, etc.

Dyanamic range. Our method is not specific to the Replica dataset. That being said,
physically-based material and lighting reconstruction does require a sufficient dynamic
range of observations, e.g. to provide some direct observations of light sources and high-

157

Chapter 11. Inverse Rendering of Real Rooms

(a) Reference (b) Optimized without
global illumination

(c) Optimized with
path tracing

R
en

de
ri

ng
A

lb
ed

o
te

xt
ur

e

Figure 11.4: Real-world light transport features global illumination (GI) between objects. Reconstructing

the marble table texture in this synthetic scene (a) poses severe challenges for classic techniques. The

reflection of the apples cannot be explained without GI (b), and this discrepancy between reality and

reconstruction can only be explained via incorrect color bleeding into the texture. A differentiable path

tracer (c), such as the one discussed in Chapter 4, can disentangle the effects caused by individual objects.
In both cases, unobserved texture regions remained at their initialization value (gray).

lights without overexposure. In the Replica captures, one of the sensors is an RGB cam-
era that records a video stream in Standard Dynamic Range (SDR). Extended dynamic
range is achieved by cycling exposure time every frame (multiplexed HDR), as shown in
Figure 11.5. Therefore, there is no single HDR image available for a specific viewpoint,
but under- and over-exposed areas change at each frame.

Handling imperfect input data. Regardless of the source, real-world data invari-
ably contains noise and imperfections such as imprecise camera poses, surface normals,
missing fine geometry, and inexact segmentation, producing systematic discrepancies
between renderings and the observations. It is imperative that the method handles such
flaws gracefully.

In our pre-processing step, we discard frames with severe under- and over-exposure

158

Chapter 11. Inverse Rendering of Real Rooms

1/100𝑠 1/100𝑠 1/100𝑠 1/1666𝑠 1/16666𝑠

Figure 11.5: Scenes from the Replica dataset [190] were captured with a handheld camera rig. The RGB

video stream uses multiplexed HDR: SDR frames alternate between three exposure times. For each cam-

era pose, we therefore have access to a single SDR frame only.

and motion blur, which are easily detected from the difference in camera pose between
adjacent frames. We also linearize and white-balance the images, and remove lens dis-
tortion. Scene geometry is represented with a standard triangle mesh with UV texture
parametrization. The original Replica data lacks UV coordinates, so we generate them
automatically using Blender’s standard “Smart UV Project” operator [1].

11.3.2 Inductive bias & modeling assumptions

The inverse problem targeted by our method is highly ambiguous: each surface loca-
tion within the scene can in principle affect the color of any other position via indirect
reflections. Because the light emitted by a light source can interact with multiple mate-
rials before arriving at the camera, any given observation can be explained in multiple
ways. For example, objects seen via specular reflection can be misattributed as emission
or diffuse reflectance (Figure 11.4).

Therefore, a naive application of image-based differentiable rendering systematically
overfits with poor local minima. We introduce several inductive biases and heuristics
that promote plausible and consistent results to address these issues.

Emitters. We model light sources as area lights (emissive surfaces) with a cosine-
weighted directional profile. However, emission is difficult to disentangle from reflec-

159

Chapter 11. Inverse Rendering of Real Rooms

(a) Reference (b) Optimized (re-rendering) (c) Optimized (emission only)

Figure 11.6: Unconstrained joint optimization of material and emission reproduces the reference (a)
with high fidelity, as shown in (b). However, the solution found by the optimizer is absurd, since it turns

the entire scene into an emissive surface (c). Since no light sources are visible in that frame, a correct

reconstruction would have (c) be entirely black.

tion. For example, a highlight observed on a surface can be misinterpreted as a light
source. In our experiments, allowing unrestricted optimization of emission values al-
ways converges to implausible solutions, with nonzero emission values on all scene sur-
faces. The problem is illustrated in Figure 11.6.

Therefore, we initially restrict spatial variation of emission to a single intensity value
per object, based on the instance segmentation. Once light sources have been identified
by the optimization, we enable spatially-varying emission over those regions. Here,
there’s an implicit assumption that light sources are significantly brighter than non-
emissive surfaces.

Material model. Recall that the bidirectional scattering distribution function (BSDF)
models the surface material and defines how much radiance is reflected or refracted from
an incident direction to an outgoing direction (Equation (2.20)). A large variety of general
and specialized BSDF models have been proposed throughout decades of research [216].

Since we do not assume access to a classification of materials over the scene, we
choose a single material model that can cover the majority of appearance, while keeping
the number of parameters to a minimum. Importantly, we do not support transparent or
refractive materials. Spatial variations are handled by texturing the model’s parameters
over the scene’s surfaces.

The Disney BRDF [217] is a widely adopted material model used in movies and games

160

Chapter 11. Inverse Rendering of Real Rooms

(a) Reference (b) Optimized

(c) Roughness

(d) Specular

Figure 11.7: Unconstrained optimization of material parameters leads to implausible results, such as

materials being highly glossy only where highlights were observed.

that captures a versatile set of appearance with intuitive controls. It exposes ten high-
level parameters such as base RGB color, metalicness, roughness, and clearcoat. In un-
structured optimization, however, different parameter configurations often lead to sim-
ilar appearance (underdetermined problem). To reduce this ambiguity, we restrict op-
timization to only handle opaque surfaces with diffuse albedo, roughness, and specular
parameters.

A second important ambiguity is due to the fact that we can judge a surface’s rough-
ness at a point only when we observe an actual highlight at that point. Therefore, the
optimizer is able to infer surface specularity and roughness only where the specular
highlights are observed (Figure 11.7). However, we cannot expect our captured data
to observe highlights at every point where they could occur. Therefore, we assume the
roughness and specularity to remain constant within a class of the surface segmentation
and optimize a single roughness & specularity value per object. This is a common case
in the real world and also reduces the number of parameters to optimize, speeding up
convergence.

Here, the underlying assumption is that the segmentation is sufficiently granular to
separate surfaces with different materials, even on the same object.

Initialization. Proper initialization is important to guide optimization toward a good
minimum. We start with neutral constant values for the emission (0), roughness (0.5)
and specular (0.5) parameters. To initialize the spatially-varying diffuse color, we build
a median texture by iterating over all available reference pictures and projecting them in
texture space. We employ an online median estimator [218] to avoid memory concerns

161

Chapter 11. Inverse Rendering of Real Rooms

when given tens of thousands of views. We selected a median rather than a mean filter
to suppress view-dependent effects such as specular reflection.

11.3.3 Texture-space sampling for variance reduction

In Chapters 9 and 10, we used a straightforward image-by-image optimization loop: the
current state of the scene is rendered from one or multiple sensors, and we minimize the
distance to the corresponding references. All reference pixels are given equal impor-
tance. However, the target unknowns (material and illumination parameters) lie in the
space of scene surfaces (texture space). Therefore, in the current application, optimizing
over all pixels within a frame(s) leads to uneven convergence. Indeed, the unknowns
(e.g. albedo texture values) are observed unevenly within a single view, as well as over
the video sequence. This is visualized in Figure 11.8. Additionally, view-dependent ef-
fects such as glossy highlights require multiple observation angles to disambiguate the
roles of diffuse and specular components.

Texture-space sampling. Instead, we propose to form the training batches by sam-
pling the unknowns uniformly directly in texture space. This is more efficient than sam-
pling a random subset of views, as it allows to reduce the noise in gradients by proceed-
ing with batches of observations that are directly relevant to the selected unknowns.

Texture-space sampling is realized as follows. At the start of each iteration, we se-
lect a subset of the unknown variables by sampling uniformly at random over texture
space. The number of sampled points effectively determined the batch size, and can be
adjusted based on the available GPU or system memory. Using a precomputed inverse
UV mapping, we look up the corresponding 3D positions on the scene surfaces. Next, we
connect the sampled mesh positions to a random set of reference view positions. Con-
nections that are occluded by geometry, or simply fall outside of the cameras’ frusta, are
discarded. For this batch of visible 3D positions, we fetch the corresponding pixel values
from the reference RGB frames. Finally, we estimate the current radiance values for the
batch with differentiable path tracing. After computing the per-pixel loss (averaged over
all rays), gradients are obtained by backpropagating through the rendering algorithm.
Finally, scene parameters are updated with an optimizer step.

Jacobian factors. Transformations applied to the samples–mapping from UV space
to scene surfaces and finally to camera rays–imply a change of probability density. In
standard Monte Carlo rendering, that change should be accounted for when computing

162

Chapter 11. Inverse Rendering of Real Rooms

0.0

0.2

0.4

0.6

0.8

1.0

Figure 11.8: Unstructured capture of real-life scenes from handheld video results in an uneven density of

observations, which in turn leads to uneven convergence with naive inverse rendering. We visualize the

relative number of observations for each texel of the office-2 scene [190].

the sampling weight by multiplying it with the Jacobian determinant of each transforma-
tion [19, 24]. These factors include a term accounting for the UV mapping’s distortion, as
well as a geometry term cos(𝜃)

𝑑2 , where 𝜃 is the incident angle to the sampled surface and
𝑑 is the distance to the camera. Intuitively, the geometry term corrects for the fact that
sampling that same surface point from the camera’s directional distribution becomes
less likely as the distance increases, or the observation angle more grazing.

However, the explicit goal of our sampling technique is to assign equal weight to all
optimization variables. Note that in the context of an optimization, we are free to define
the objective function as needed to improve convergence and reconstruction quality. To
this end, we omit the Jacobian terms above, implicitly introducing a factor 𝛼 𝑗 canceling
them out in our per-ray objective function.

This is in contrast with the method of Tsai et al. [36], where reconstructed surface
points are sampled directly and all Jacobian terms are included. In their non-line-of-
sight reconstruction application, observation distances are roughly constant, while ours
vary greatly from viewpoint to viewpoint. Omitting Jacobian factors also helps us avoid
exploding gradients when 𝑑 approaches zero. Finally, we obtain gradients of comparable
magnitude spread evenly over texture space, as illustrated in Figure 11.9.

11.3.4 Optimization details

We found that several low-level details of the pipeline had a significant impact on the
reconstruction quality. We summarize them here and refer to the original article [16] for

163

Chapter 11. Inverse Rendering of Real Rooms

(a) Image-space (b) Texture-space (c) Texture-space (re-weighted)

Figure 11.9: We illustrate the gradients produced by different sampling techniques. We visualize albedo

gradient magnitude at a given iteration, directly in texture space. The standard image-based optimization

loop (a) leads to nonzero gradients only within the frusta of cameras selected for this iteration. Our

texture-space sampling scheme (b) selects texels uniformly at random and connects them to camera

positions, resulting in even coverage within an iteration. Finally, we implicitly reweight the objective

function by omitting Jacobian factors (c) in order to obtain gradients of comparable magnitude regardless

of observation distance or angle. Note that some locations are not mapped to any scene surface and thus

have zero gradients.

the complete list.

Coarse-to-fine optimization. Due to the ambiguities described in Section 11.3.2,
starting the optimization with all unknowns of a large scene at their highest resolu-
tion leads to low-quality local optima. “Coarse-to-fine” schemes have been shown to
help greatly in previous work [99] and in our own experience (Chapters 9 and 10). The
albedo is first optimized as a 1024 × 1024 RGB texture, and then refined in two stages to
reach the final 4096× 4096 resolution. After the first stage, emitters contributing a small
fraction of the total scene radiance are rounded to zero. In the same spirit, we gradually
introduce optimization variables: first emission, then roughness & specular coefficients,
and finally spatially-varying albedo.

Loss function. We use a pixel-wise mean squared loss. The loss operates in linear
color space, i.e., without gamma compression. Under-exposed (resp. over-exposed) val-
ues are handled with a one-sided difference that only penalizes values above (resp. be-
low) the clipping threshold 𝑣min (resp. 𝑣max).

164

Chapter 11. Inverse Rendering of Real Rooms

Optimizer. We use the Adam optimizer [150] with learning rates 1 for emission, 0.005
for roughness & specular, and 0.1 for diffuse albedo. We found two additional modifica-
tions to be helpful.

First, recall that in addition to the noise from stochastic gradient descent (only a
small subset of all reference values are optimized at each step), each path-traced sample
is itself a noisy Monte Carlo estimate. The path-traced sample values often include high-
valued outliers caused by improbable light paths. We minimize their impact by clamping
gradients to ±10−8 (before Adam rescaling) to prevent these outliers from contaminating
the optimized textures. While this introduces bias, we found that it greatly improved
convergence overall.

Another important observation is that at each iteration, only a subset of the scene is
observed and can receive meaningful gradients. Moreover, the moment estimates main-
tained by Adam inevitably include Monte Carlo stochastic estimation noise from previ-
ous iterations’ gradients. As a result, at each step of the optimizer, noisy momentum is
applied repeatedly to all variables, even those not observed in the current batch. As long as
no new observations are made for a given variable, the noise pattern in its momentum
remains fixed, impeding convergence. To alleviate this issue, we restrict the application
of momentum within the optimizer, as well as updates to the moments, to variables that
receive nonzero gradients at that iteration1.

Discarding indirect gradients. In the indoor scenes of the Replica dataset, we found
gradients for indirectly-observed parameters to be extremely noisy due to the low sam-
pling probability of long light paths. Understandably, an observation of a diffuse wall
tells us relatively little about the opposite wall, even though some indirect light has likely
come from there. When the available data allows, it is preferable to rely on direct ob-
servations, in order to minimize variance. Therefore, we exclude indirect light bounces
from the gradient computation. This results in memory and computational savings2 as
well as faster convergence due to the reduced noise in gradients. The idea to voluntarily
exclude a noisy gradient term to improve overall convergence behavior is reminiscent
of the biased radiative backpropagation variant of Section 4.3.8.

Note that we still compute the correct path-traced solution, so global illumination is
fully accounted for: the net effect is simply to restrict gradient-based updates to regions
1A similar technique is employed when optimizing over sparse parameter tensors, implemented for ex-
ample in PyTorch’s SparseAdam optimizer [159].

2If using radiative backpropagation instead of an AD-based implementation, these tradeoffs may balance
differently, as the memory footprint would no longer be the main limiting factor.

165

Chapter 11. Inverse Rendering of Real Rooms

that are directly observed in a given iteration, while disentangling indirect effects.

Averaging of iterates. Optimization eventually wanders around the true solution due
to Monte Carlo noise in the rendered images. We apply Polyak-Ruppert averaging [219,
220] by maintaining a running average of the parameter values over the last 10% of the
optimization.

11.4 Results

We now evaluate our method on challenging real-world scenes and showcase applica-
tions such as full scene relighting and seamless scene editing. Evaluation against the
method of Li et al. [193] and an ablation study are available in Appendix B. Additional
results, including animated sequences, validation on synthetic data, and a study of sen-
sitivity to the input data quality are available in the original article’s supplementary
document and video [16], which can be accessed at:

https://rgl.epfl.ch/publications/NimierDavid2021Material

11.4.1 Reconstruction of real captured scenes

We apply our reconstruction pipeline to the Replica dataset [190], which includes recon-
structed geometry, an approximate instance segmentation, and posed reference images
captured with a handheld rig. This input has imperfections, including noisy camera reg-
istration and missing detailed geometry, which make robust reconstruction challenging.

In order to compare against the captured ground truth, we re-render the scene from
known viewpoints after the optimization has been completed. Our re-rendered images
match the captured frames closely, including fine textured details and view-dependent
effects, as shown in Figure 11.10. The reconstructed scenes do not overfit the training
views, as shown in the out-of-distribution re-renderings, animated results and compar-
isons given in the supplemental video3.

11.4.2 Implementation

Our method was implemented in Mitsuba 2 (Chapter 7), specifically using the auto-
matic differentiation-based backend. The availability of AD made it easy to experiment
3The supplemental video is accessible at:
https://rgl.epfl.ch/publications/NimierDavid2021Material.

166

https://rgl.epfl.ch/publications/NimierDavid2021Material
https://rgl.epfl.ch/publications/NimierDavid2021Material

Chapter 11. Inverse Rendering of Real Rooms

office-0 office-2

O
pt

im
iz

ed
Re

fe
re

nc
e

room-0

O
pt

im
iz

ed
Re

fe
re

nc
e

Figure 11.10: Re-rendering scenes from the Replica dataset [190] using the materials and emission param-

eters recovered by our method matches the reference images closely, including view-dependent effects

and high-frequency detail.

167

Chapter 11. Inverse Rendering of Real Rooms

with different combinations of BRDF lobes, representations for scene components, loss
functions, etc. Nevertheless, our method could be implemented within any framework
as long as the relevant derivatives are computed. Each scene reconstruction ran for 12
hours on average on a single NVIDIA Titan RTX GPU within our experimental codebase.

Note that an implementation in Mitsuba 3, using radiative- or path replay backprop-
agation (Chapter 4), would exhibit much faster runtime4. Several parameters such as the
batch size and total iteration count could be increased, which we expect would in turn
improve reconstruction quality.

11.4.3 Applications

Scenes reconstructed with our method generalize well to out-of-distribution views and
can be rendered from any previously unobserved viewpoint (Figures 11.12 and 11.13).
We additionally visualize our method’s outputs: a set of textures representing the scene’s
emission and physically based material parameters (diffuse albedo, roughness, and spec-
ular). The reconstructed albedo textures are shown in texture space in Figure 11.11 They
are well disentangled and noise-free despite significant Monte Carlo noise present dur-
ing optimization and dataset imperfections.

Figure 11.11: Ourmethod uses texture space sampling to uniformly sample the scene’s parameters during

optimization. We visualize the optimized albedo texture of scenes office-0 and room-0 in texture space

(i.e. unwrapped UV space). The 4K textures were downsampled before embedding into the document.

In this format, the scene is ready for use in standard rendering pipelines for photo-
4These algorithms and systems were not ready for use at the time this method was being developed.

168

Chapter 11. Inverse Rendering of Real Rooms

realistic applications such as scene editing, novel view synthesis, and relighting. Fig-
ure 11.14 (left) demonstrates embedding four virtual objects in the scene, which is a
common task for mixed reality applications. Without any additional processing or man-
ual work, the inserted objects blend in and interact correctly with their surrounding (e.g.,
see reflections, shadows, matched lighting).

Figure 11.14 (right) show a complete re-lighting of the scene: existing illumination
was removed and a brightly colored light source was added near the floor. Likewise in
Figure 11.15, the existing emitters were replaced by an environment map emulating the
daylight cycle. In both cases, the scene reacts correctly to the new illumination, and
there are no visible residuals of the original illumination the scene was captured in, such
as baked shadows or highlights. Note that this would not be possible without correctly
disentangling materials and lighting, as shown in Figure 11.2.

We believe these and many other possible applications enable more seamless integra-
tion of real and virtual worlds in scenarios like virtual and augmented reality, robotics
simulation, and dataset augmentation.

11.5 Conclusion

We presented a method for material and lighting reconstruction in large captured en-
vironments based on the differentiable rendering framework of Chapter 7. In order to
gracefully handle the unavoidable capture & inputs imperfections, uneven coverage of
the reference images, as well as correctly disentangling spatially-varying material and
illumination parameters, we introduced a texture-space optimization scheme, carefully
chosen inductive biases and heuristics, which guide the reconstruction toward high-
quality minima.

Limitations. The main limitation of our method is its reliance on the input recon-
structed geometry. In our current scene parametrization, rendered images may only
explain observations where geometry is present. For example, if a highly emissive or
specular object is entirely missing from the geometry, its contribution will most likely
be outprojected and attributed to the background objects by the optimizer. This behav-
ior can be observed in the reconstruction of room-0 (Figure 11.13, top). Automatically
detecting and adding missing emitters would be a valuable improvement in future work.

Our method does not currently handle reconstruction of transparent objects, even
if their shape is correct in the provided geometry (which is a challenge in itself). An

169

Chapter 11. Inverse Rendering of Real Rooms
Re

nd
er

ed
Base

color
Sp

ec
ul

ar
Roughness

(a) office-0 scene

Re
nd

er
ed

Base
color

Sp
ec

ul
ar

Roughness

(b) office-2 scene

Figure 11.12: Scenes obtained with our method can be re-rendered from any viewpoint. The base color

texture includes fine detail (4096×4096 resolution) and all recovered parameters are physically based and

correctly disentangled. Continued in Figure 11.13.

170

Chapter 11. Inverse Rendering of Real Rooms
Re

nd
er

ed
Base

color
Sp

ec
ul

ar
Roughness

(a) room-0 scene

Re
nd

er
ed

Base
color

Sp
ec

ul
ar

Roughness

(b) room-1 scene

Figure 11.13: Novel viewpoint rendering, continued from Figure 11.12.

171

Chapter 11. Inverse Rendering of Real Rooms

Figure 11.14: Using our recovered emission and materials, adding virtual objects to the office-0 scene

(left) automatically results in correct shadows, reflections and indirect illumination. Scenes can addition-

ally be relit with arbitrary light sources and rendered from any viewpoint (right).

(a)(a) (b)(b)

(c)(c) (d)(d)

Figure 11.15: Our method enables photorealistic relighting of captured scenes. Here, we simulate lighting

variations at three different times of day (a-c) in the room-0 scene. The scene reacts correctly to new

illumination, which differs significantly from the original indoor lighting it was captured with (d).

172

Chapter 11. Inverse Rendering of Real Rooms

(a) Reference (b) Optimized

Figure 11.16: Since the reflectance model used by our method does not support transparency, the color

of the table seen through the back of the chair is incorrectly attributed to the chair itself.

example is shown in Figure 11.16: the back of the chair is incorrectly assigned the color
of the table that should have been seen through it. Differentiable rendering is gener-
ally well suited to support advanced effects such as transparency and refractions, as the
corresponding light transport is well understood. However, we have limited our sim-
ulation to the most common and important effects in order to reduce the underlying
optimization complexity and improve robustness of the method in common scenarios.

Future work. We believe our method provides an important stepping stone towards
full scene understanding, which opens up new opportunities for scenarios where realism
is important, such as augmented and mixed reality, robotics and sensory simulation, and
synthetic augmentation of datasets.

Despite high-quality input data, the accuracy and robustness of reconstructions can
still be improved. Some of the heuristics used in the method were appropriate for the
indoor setting, but may not generalize to outdoor or very different scenes. More work
is needed on principled priors for reconstruction from real data—perhaps using a data-
driven approach.

Our method, being based on a physically based differentiable rendering, could natu-
rally be extended in future work to reconstruct a wider range of appearance (e.g. trans-
parent and refractive surfaces), as well as illumination from outdoor scenes (e.g. using an
environment map). Finally, the imperfections of geometric reconstruction and reference
images (such as camera pose, motion blur, sensor noise, etc) could be integrated into
the differentiable simulation and minimized to further improve reconstruction [12, 57,
112, 113, 114]—although with each new degree of freedom come new ambiguities and
challenging local minima.

173

12 | Conclusion

Over the last five years, interest in differentiable physically based rendering research has
grown significantly, leading to fast-paced progress. Our work contributes to the field on
three axes: algorithms, systems, and applications.

Contributions. First off, we proposed algorithms for unbiased and efficient estima-
tion of scene parameter gradients through physically based rendering algorithms. We
initially considered the usage of automatic differentiation and examined the associated
tradeoffs. AD is a powerful tool for fast experimental development, but comes with
significant memory requirements, which limits its applicability. In response, we have
developed an adjoint method for differentiable rendering, which recasts the gradient es-
timation problem as a modified light transport problem. This unlocked vastly more effi-
cient implementations, and opened the door to applying decades of rendering research
to the adjoint problem. In the presence of participating media, such as clouds, primal
rendering remains challenging and computationally expensive. Volumes are among the
phenomena that need physically based algorithms the most in order to be rendered ac-
curately. We identified a flaw in existing differentiable volume rendering approaches,
and proposed a dedicated importance sampling technique yielding unbiased and low
variance gradients.

Next, together with multiple collaborators at EPFL’s Realistic Graphics Lab, we de-
signed and developed systems to support the efficient implementation of these algo-
rithms, as well as effective research. Mitsuba 2 is an open-source retargetable forward
and differentiable renderer. It supports multiple representations of light (from monochro-
matic to spectral and polarized light), computational backends (CPU, GPU), numerical
precisions, as well as automatic differentiation. By conducting our research and develop-
ing the system in parallel, we learned about the tradeoffs involved and the requirements
imposed by future differentiable rendering research. With the radiative backpropagation
algorithm, it became possible to contain the usage of AD to smaller components such as
BSDF and emitters. In turn, this enabled JIT compilation of the entire rendering algo-
rithm with symbolic execution—AD included. Because the AD graph no longer needs to
be maintained at rendering time, the resulting implementation uses orders of magnitude
less memory and time. These findings were incorporated, generalized and systematized
by Jakob et al. [80] into the Dr.Jit library, which underpins the Mitsuba 3 system [79].

Finally, we brought together our algorithms and systems to tackle challenging in-

174

Chapter 12. Conclusion

verse rendering scenarios. Our caustic design application demonstrated the power and
flexibility of the AD-based approach. A simple implementation of the forward pass, com-
bined with a stochastic gradient descent loop, can compete with hand-derived methods
and even generalize to more complex settings such as mixing colored emitters and GRIN
lenses. Using our differential ratio tracking sampler, we carried out difficult inverse vol-
ume reconstructions, faithfully recovering the density and albedo of participating media.
After encountering suboptimal local minima in our experiments, we proposed leveraging
a non-physical, NeRF-style representation as initialization to bootstrap the physically-
based reconstruction. Moving to real-world data, we recovered the lighting and material
properties of captured indoor scenes. The methods had to deal with many imperfections
in the input and includes a collection of practical ideas to overcome them. The recovered
material parameters are high-resolution fully relightable, editable, and ready for use in
standard graphics pipelines.

Impact. We believe that our contributions, together with other recent advances in the
field, constitute a solid foundation for differentiable rendering research.

In fact, follow-up work has already been conducted in all areas discussed above. Path
replay backpropagation [21] improves on our radiative backpropagation algorithms, re-
ducing its time complexity and generalizing it to specular materials. Dr.Jit [80] and
Mitsuba 3 build upon Mitsuba 2 and the megakernel conversion technique of Chapter 8
to deliver a fast and flexible platform for differentiable rendering research and applica-
tions.

Finally, our algorithms and systems were put to use in a range of articles, from 3D
printing [130] to millimeter wave radar simulation [169] and the identification of mate-
rials and pose of space debris [135]. A literature review conducted at the time of writing
reveals that 72 published works use, build onto or extend Mitsuba 2.

The rapidly growing set of practical applications spans many fields, including light
field capture [118], cloud tomography [132, 133, 134] non-line of sight imaging [36, 221],
computational lens design [129], as well as automatic simplification and reconstruction
of video game assets [222, 223].

Outlook. The research presented in this thesis notably lacked support for derivatives
at discontinuities, such as silhouette edges. In practice, this means that the proposed al-
gorithms cannot be used on their own to optimize the shape of objects or their positions.
Luckily, dedicated methods are actively researched [57, 112, 113], and can be combined
with ours [12]. At the time of writing, the available methods for unbiased gradient esti-

175

Chapter 12. Conclusion

mation at silhouette discontinuities still add significant implementation complexity and
runtime. More research is needed for a lightweight and general solution, including sup-
port for implicit shape representations [114].

The design of specialized sampling strategies that improve the variance of gradient
estimates, akin to Chapter 5, is also a promising avenue for future work. More broadly,
a better understanding of the effect of quality tradeoffs is needed to optimally utilize the
available compute budgets.

The foundation that has been laid opens the door to a wealth of applications. In-
deed, many scientific problems involve an imaging process of some kind—from physics
to climate science to optics and medical imaging. Additional research is required to ap-
ply differentiable rendering tools effectively to these concrete problems. As we have
seen in Chapter 11, real-world data has its own challenges: noisy observations, imper-
fect calibration and models, etc, will all need to be handled robustly. Perhaps even more
importantly, every new application comes with under-determinism, ambiguities, and
various non-convexities. We can expect domain-specific priors, modeling assumptions,
and initialization schemes to be part of the solution. Increasing the scope of the input
data, e.g. to include spectral or polarization measurements, can also help remove ambi-
guities during reconstruction [33]. However, a broadly applicable, general method for
robust convergence on entire classes of inverse problems is desirable. Other scientific
fields face similar challenges, and it will be important to learn from them as well as share
back any advances.

176

Appendices

177

A | Inverse Volume Rendering with
the Null-Scattering Integral For-
mulation

In Section 5.3.2, we identified a singularity 1/𝜎𝑡 when evaluating in-scattering gradients
using free-flight sampling based estimators. We now show that this singularity mate-
rializes as well when deriving the estimators starting from the null-scattering integral
formulation.

Null-scattering form. The null-scattering integral form of the radiative transfer equa-
tion [224, 225, 226] is

𝐿𝑖 (x,𝝎) =
∫ 𝑡𝑠

0
𝜎 T̄(𝑡)

[
𝜎𝑎 (𝑡)
𝜎

𝐿𝑒 (𝑡) + 𝜎𝑠 (𝑡)
𝜎

𝐿𝑠 (𝑡,𝝎) + 𝜎𝑛 (𝑡)
𝜎

𝐿𝑖 (𝑡,𝝎)
]

d𝑡

+ T(𝑡𝑠)
[
𝐿𝑒 (𝑡𝑠) + 𝐿𝑠 (𝑡𝑠,𝝎)

]
, (A.1)

where 𝑡𝑠 is the distance to the next surface along the ray (x,𝝎), e.g. the medium’s bound-
ary. T̄(𝑡) = exp (−𝜎 𝑡) corresponds to the transmittance of the homogenized medium
and 𝜎𝑛 = 𝜎 − 𝜎𝑡 .

Adjoint null-scattering radiative transfer equation. Assuming 𝐿𝑒 = 0 within the
medium and using the 𝜽 = (𝜎𝑡 , 𝛼) parametrization, Equation (A.1) simplifies to

𝐿𝑖 (x,𝝎) =
∫ 𝑡𝑠

0
𝜎 T̄(𝑡)

[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

𝜎
𝐿𝑠 (𝑡,𝝎) + 𝜎𝑛 (𝑡)

𝜎
𝐿𝑖 (𝑡,𝝎)

]
d𝑡

+ T(𝑡𝑠)
[
𝐿𝑒 (𝑡𝑠) + 𝐿𝑠 (𝑡𝑠,𝝎)

]
. (A.2)

In the following, we consider 𝜕𝜽𝜎 = 0, as the majorant is constant. Taking the derivative
with respect to scene parameters 𝜽 and omitting the dependence on 𝝎, we obtain the
following terms. Similar to Equation (5.11), the first term captures how the in-scattered

radiance can increase due to a local density increase:

𝜕𝜽𝐿𝑖 =
∫ 𝑡𝑠

0
𝜎 T(𝑡) 𝜕𝜽

[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

]
𝜎

𝐿𝑠 (𝑡) d𝑡 · · · (A.3)

178

Appendix A. Inverse Volume Rendering with the Null-Scattering Integral Formulation

Recalling that 𝜎𝑛 = 1 − 𝜎𝑡 , we see that the next expression has a role similar to Equa-
tion (5.4)—it accounts for the density increases at positions prior to real interactions:

· · · +
∫ 𝑡𝑠

0
𝜎 T̄(𝑡) 𝜕𝜽𝜎𝑛 (𝑡)

𝜎
𝐿𝑖 (𝑡) d𝑡

+𝑇 (𝑡𝑠)
[∫ 𝑡𝑠

0
−𝜕𝜽𝜎𝑡 (𝑡 ′) d𝑡 ′

] [
𝐿𝑒 (𝑡𝑠) + 𝐿𝑠 (𝑡𝑠)

] · · · (A.4)

The third expression captures changes later along the path, which are weighted by the
path throughput:

· · · +
∫ 𝑡𝑠

0
𝜎 T̄(𝑡)

[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

𝜎
𝜕𝜽𝐿𝑠 (𝑡) + 𝜎𝑛 (𝑡)

𝜎
𝜕𝜽𝐿𝑖 (𝑡)

]
d𝑡

+𝑇 (𝑡𝑠)
[
𝜕𝜽𝐿𝑒 (𝑡𝑠) + 𝜕𝜽𝐿𝑠 (𝑡𝑠)

]
. (A.5)

Free-flight based estimators with null-scattering. Since the null-scattering for-
mulation implies sampling free-flight distances 𝑡 ∼ 𝜎 T̄(𝑡), it may appear as if the prob-
lematic 1/𝜎𝑡 term discussed in Section 5.3.2 has been avoided. However, it manifests
again at the very next step: once the distance 𝑡 has been sampled from the homoge-
nized medium, testing whether a real or null (virtual) particle has been encountered is
determined by the probabilities

𝑝real(𝑡) =
𝜎𝑡 (𝑡)
𝜎

and 𝑝null(𝑡) =
𝜎𝑛 (𝑡)
𝜎

, (A.6)

reintroducing the problematic factor. Hence, the resulting estimators of adjoint terms
(A.3) and (A.4) suffer from the same issue as before:

⟨𝜕𝐿N
1 ⟩ =

𝜎

𝜎𝑡 (𝑡)
𝜕𝜽

[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

]
𝜎

𝐿𝑠 (𝑡) =
𝜕𝜽

[
𝜎𝑡 (𝑡) 𝛼 (𝑡)

]
𝜎𝑡 (𝑡) 𝐿𝑠 (𝑡) , (A.7)

and ⟨𝜕𝐿N
2 ⟩ =

𝜕𝜽𝜎𝑛 (𝑡)
𝜎𝑛 (𝑡) 𝐿𝑖 (𝑡) . (A.8)

Symmetric issue in null interaction gradients. While we have focused our efforts
on issues due to real interactions where 𝜎𝑡 ≈ 0, Tregan et al. [149] have identified a
similar issue for 𝜎𝑛 ≈ 𝜎 , which becomes apparent in Equation (A.8). Depending on the
application, selecting a sufficiently large majorant 𝜎 can be a practical way to sidestep
the problem. Another simple solution would be to estimate transmittance gradients of
Equations (5.8) and (A.4) not at locations 𝑡 ′ ∈ (0,min(𝑡, 𝑡𝑠)) corresponding to null inter-
actions, but rather sampled uniformly at random on the segment. Since the integrands

179

Appendix A. Inverse Volume Rendering with the Null-Scattering Integral Formulation

do not include other factors beyond 𝜕𝜽𝜎𝑡 , uniform sampling is appropriate. The esti-
mator would then include a sampling weight equal to the length of the segment. Our
method generalizes the solution of Tregan et al. by handling both the in-scattering and
transmittance gradient singularities.

In practice, we found transmittance gradients to be well-behaved and did not observe
significant differences between these alternatives when using a majorant 1.01× larger
than the maximum 𝜎𝑡 value.

180

B | InverseRendering ofReal Rooms
— additional results

We include additional validations for the reconstruction method of Chapter 11.

B.1 Comparison to prior work

We compare to the method of Azinović et al. [128] for joint materials and lighting es-
timation in Figure B.1. To this end, we modified the authors’ implementation to sup-
port Replica’s multiplexed HDR captured images. Spatially-varying parameters are sup-
ported in their method by subdividing the geometry and assigning one material per tri-
angle. The optimization is run with the settings recommended in the paper for 6 million
iterations, on the same input data as ours.

Their method only accounts for the first two bounces of light transport and must thus
produce an overly bright base color to fit the reference, which is especially apparent in
shadowed regions, where most light comes from indirect reflection. Roughness and spec-
ular, as well as other BRDF parameters (not shown), are optimized freely, which leads to
implausible high-frequency variations across surfaces. Finally, a significant amount of
Monte Carlo noise is present in the optimized spatially-varying parameters.

In contrast, our pipeline allows us to simulate full global illumination with a large
number of light bounces (we use 8 in practice as the contribution from further bounces
is minimal). Combined with our texture-space sampling method and inductive biases,
our method produces plausible and noise-free results with more precisely reconstructed
albedo, material parameters, and illumination. Finally, shadows are effectively removed
from the albedo texture, and view-dependent effects such as specular highlights are cor-
rectly attributed to material parameters.

B.2 Ablation study

In order to evaluate the impact of each of our method’s components and design decisions,
we have conducted a detailed ablation study. We reconstruct emission and material
parameters of the office-0 scene using 9 variants of our method, progressively adding
the features described in Section 11.3. We run each variant for 130 minutes and compute
the pixel-wise Mean Squared Relative Error (MSRE) with respect to a fixed set of 30

181

Appendix B. Inverse Rendering of Real Rooms — additional results

Azinović et al. Ours

Re
nd

er
ed

(n
ov

el
vi

ew
)

Azinović et al. Ours Azinović et al. Ours

Ba
se

co
lo

r Roughness
Sp

ec
ul

ar
Em

ission

Figure B.1: Given the same inputs, previous work based on differentiable path tracing [128] outputs

textures contaminated by Monte Carlo rendering noise and exhibits several of the issues outlined in Sec-

tion 11.3, including uneven convergence and implausible high-frequency changes in roughness & specular

material parameters.

182

Appendix B. Inverse Rendering of Real Rooms — additional results

[ALKN19] (a) (b) (c) (d) (e) (f) (g) (h) (i)
0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
Sq

ua
re

d
R

el
at

iv
e

E
rr

or

Figure B.2: Ablation study: we progressively add features to a naive inverse rendering baseline (a) up to

our full method (i). The method of Azinović et al. [128] is included for comparison. Features (e-i) result
in mostly qualitative improvements, that are visible on a close-up of a wall in Figure B.3.

(a)(a) (b)(b) (c)(c) (d)(d) (e)(e)

(f)(f) (g)(g) (h)(h) (i)(i)

Figure B.3: Detailed crops of the recoveredwall of office-0 at each step of the ablation study of Figure B.2.

Our full method (i) recovers the most details while avoiding noise in the texture entirely.

183

Appendix B. Inverse Rendering of Real Rooms — additional results

reference images chosen at random. The results are shown in Figure B.2. Each feature
improves the re-rendering loss and / or helps achieve more plausible results. For visual
inspection, a close-up of the recovered wall appearance for each variant is shown in
Figure B.3.

The baseline (a) uses image-based optimization, the most direct application of differ-
entiable rendering. Variant (b) uses our novel texture-space sampling method, described
in Section 11.3.3. Variants (c) and (d) add our parametrizations of emitters and materials
respectively (Section 11.3.2). The inductive bias on materials does not decrease error in
this experiment, but does ensure more plausible results. Understandably, unconstrained
optimization may achieve good error by overfitting, but produce implausible material
parameters (see Figures 11.6 and 11.7). Variant (e) initializes the diffuse albedo parame-
ter with the median of all observations. Variant (f) clamps gradients to prevent Monte
Carlo noise from contaminating the textured parameters (Section 11.3.4), while variant
(g) additionally prevents the Adam state updates and momentum to be applied to vari-
ables that were not observed in the current iteration. Variant (h) applies Polyak-Ruppert
averaging [219, 220]. Finally, variant (i) uses a coarse-to-fine scheme, progressively in-
troducing degrees of freedom to the optimization (Section 11.3.4).

184

References

[1] Blender Online Community. Blender - a 3D modelling and rendering package.
Blender Foundation. Stichting Blender Foundation, Amsterdam, 2019. url: https:
//www.blender.org.

[2] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation”. In: CGO. San Jose, CA, USA, Mar. 2004,
pp. 75–88.

[3] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science

& Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[4] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. “Array
programming with NumPy”. In: Nature 585.7825 (Sept. 2020), pp. 357–362. doi:
10.1038/s41586-020-2649-2. url: https://doi.org/10.1038/s41586-
020-2649-2.

[5] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-
ceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and
Jarrod Millman. 2010, pp. 56 –61. doi: 10.25080/Majora-92bf1922-00a.

[6] The pandas development team. “pandas-dev/pandas: Pandas”. In: (Oct. 2022).
doi: 10.5281/zenodo.7223478.

[7] Anne-Wil Harzing. Publish or Perish. https://harzing.com/resources/publish-or-
perish. 2007.

[8] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – Seamless op-

erability between C++11 and Python. https://github.com/pybind/pybind11. 2017.

[9] Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Bri-
anna Laugher, and Florian Bruhin. pytest 7.1. 2004. url: https://github.com/
pytest-dev/pytest.

185

https://www.blender.org
https://www.blender.org
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.5281/zenodo.7223478
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest

References

[10] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C
J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Har-
ris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. “SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi:
10.1038/s41592-019-0686-2.

[11] Michael L. Waskom. “seaborn: statistical data visualization”. In: Journal of Open
Source Software 6.60 (2021), p. 3021. doi: 10.21105/joss.03021. url: https:
//doi.org/10.21105/joss.03021.

[12] Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and Wenzel Jakob. “Monte
Carlo Estimators for Differential Light Transport”. In: Transactions on Graphics

(Proceedings of SIGGRAPH) 40.4 (Aug. 2021), pp. 1–16. issn: 0730-0301. doi: 10.
1145/3450626.3459807.

[13] Wenzel Jakob. Enoki: structured vectorization and differentiation on modern pro-

cessor architectures. https://github.com/mitsuba-renderer/enoki. 2019.

[14] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. “Mitsuba
2: A Retargetable Forward and Inverse Renderer”. In: Transactions on Graphics

(Proceedings of SIGGRAPH Asia) 38.6 (Dec. 2019), pp. 1–17. issn: 0730-0301. doi:
10.1145/3355089.3356498.

[15] Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, and Wenzel Jakob. “Ra-
diative Backpropagation: An Adjoint Method for Lightning-Fast Differentiable
Rendering”. In: Transactions on Graphics (Proceedings of SIGGRAPH) 39.4 (July
2020), p. 146. issn: 0730-0301. doi: 10.1145/3386569.3392406.

[16] Merlin Nimier-David, Zhao Dong, Wenzel Jakob, and Anton Kaplanyan. “Mate-
rial and Lighting Reconstruction for Complex Indoor Scenes with Texture-space
Differentiable Rendering”. In: Eurographics Symposium on Rendering - DL-only

Track. Ed. by Adrien Bousseau and Morgan McGuire. The Eurographics Associ-
ation, 2021, pp. 73–84. isbn: 978-3-03868-157-1. doi: 10.2312/sr.20211292.

186

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.1145/3450626.3459807
https://doi.org/10.1145/3450626.3459807
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3386569.3392406
https://doi.org/10.2312/sr.20211292

References

[17] Merlin Nimier-David, Thomas Müller, Alexander Keller, and Wenzel Jakob. “Un-
biased Inverse Volume Rendering with Differential Trackers”. In: ACM Trans.

Graph. 41.4 (July 2022), 44:1–44:20. issn: 0730-0301. doi: 10.1145/3528223.
3530073. url: https://doi.org/10.1145/3528223.3530073.

[18] Russel E. Caflisch. “Monte Carlo and quasi-Monte Carlo methods”. In: Acta Nu-

merica 7 (Jan. 1998), 1–49. issn: 0962-4929. doi: 10.1017/S0962492900002804.

[19] Eric Veach and Leonidas J. Guibas. “Optimally Combining Sampling Techniques
for Monte Carlo Rendering”. In: Proceedings of the 22nd Annual Conference on

Computer Graphics and Interactive Techniques. SIGGRAPH ’95. New York, NY,
USA: Association for Computing Machinery, 1995, 419–428. isbn: 0897917014.
doi: 10.1145/218380.218498. url: https://doi.org/10.1145/218380.
218498.

[20] Ivo Kondapaneni, Petr Vévoda, Pascal Grittmann, Tomáš Skřivan, Philipp Slusallek,
and Jaroslav Křivánek. “Optimal multiple importance sampling”. In: ACM Trans-

actions on Graphics (TOG) 38.4 (Aug. 2019), pp. 1–14. issn: 0730-0301. doi: 10.
1145/3306346.3323009.

[21] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. “Path Replay Backpropa-
gation: Differentiating Light Paths using Constant Memory and Linear Time”.
In: Transactions on Graphics (Proceedings of SIGGRAPH) 40.4 (Aug. 2021), 108:1–
108:14. issn: 0730-0301. doi: 10.1145/3450626.3459804.

[22] Melissa E. O’Neill. PCG: A Family of Simple Fast Space-Efficient Statistically Good

Algorithms for RandomNumber Generation. Tech. rep. HMC-CS-2014-0905. Clare-
mont, CA: Harvey Mudd College, Sept. 2014.

[23] Robert L Cook. “Stochastic sampling in computer graphics”. In: ACM Transac-

tions on Graphics (TOG) 5.1 (Jan. 1986), pp. 51–72. issn: 0730-0301. doi: 10.1145/
7529.8927.

[24] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering:

From Theory to Implementation (3rd ed.) 3rd. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., Nov. 2016, p. 1266. isbn: 9780128006450.

[25] Eric Veach. Robust monte carlo methods for light transport simulation. 1610. Stan-
ford University PhD thesis, 1997.

[26] Wenzel Jakob. Mitsuba renderer. Version 0.6. 2010. url: http://www.mitsuba-
renderer.org.

187

https://doi.org/10.1145/3528223.3530073
https://doi.org/10.1145/3528223.3530073
https://doi.org/10.1145/3528223.3530073
https://doi.org/10.1017/S0962492900002804
https://doi.org/10.1145/218380.218498
https://doi.org/10.1145/218380.218498
https://doi.org/10.1145/218380.218498
https://doi.org/10.1145/3306346.3323009
https://doi.org/10.1145/3306346.3323009
https://doi.org/10.1145/3450626.3459804
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
http://www.mitsuba-renderer.org
http://www.mitsuba-renderer.org

References

[27] David L. MacAdam. “Maximum Visual Efficiency of Colored Materials”. In: J. Opt.
Soc. Am. 25.11 (Nov. 1935), pp. 361–367. issn: 0030-3941. doi: 10.1364/JOSA.25.
000361. url: http://opg.optica.org/abstract.cfm?URI=josa-25-11-361.

[28] Johannes Meng, Florian Simon, Johannes Hanika, and Carsten Dachsbacher. “Phys-
ically Meaningful Rendering using Tristimulus Colours”. In: Computer Graphics

Forum 34.4 (July 2015), pp. 31–40. issn: 0167-7055. doi: https://doi.org/10.
1111/cgf.12676. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1111/cgf.12676. url: https://onlinelibrary.wiley.com/doi/abs/10.
1111/cgf.12676.

[29] Wenzel Jakob and Johannes Hanika. “A Low-Dimensional Function Space for
Efficient Spectral Upsampling”. In: Computer Graphics Forum (Proceedings of Eu-

rographics) 38.2 (Mar. 2019), pp. 147–155. issn: 0167-7055.

[30] Mengqi (Mandy) Xia, Bruce Walter, Eric Michielssen, David Bindel, and Steve
Marschner. “A Wave Optics Based Fiber Scattering Model”. In:ACMTrans. Graph.

39.6 (Nov. 2020), pp. 1–16. issn: 0730-0301. doi: 10.1145/3414685.3417841. url:
https://doi.org/10.1145/3414685.3417841.

[31] Seung-Hwan Baek, Tizian Zeltner, Hyun Jin Ku, Inseung Hwang, Xin Tong, Wen-
zel Jakob, and Min H. Kim. “Image-Based Acquisition and Modeling of Polarimet-
ric Reflectance”. In: ACM Trans. Graph. 39.4 (July 2020), p. 139. issn: 0730-0301.
doi: 10.1145/3386569.3392387. url: https://doi.org/10.1145/3386569.
3392387.

[32] Inseung Hwang, Daniel S. Jeon, Adolfo Muñoz, Diego Gutierrez, Xin Tong, and
Min H. Kim. “Sparse Ellipsometry: Portable Acquisition of Polarimetric SVBRDF
and Shape with Unstructured Flash Photography”. In: ACM Trans. Graph. 41.4
(July 2022), pp. 1–14. issn: 0730-0301. doi: 10.1145/3528223.3530075. url:
https://doi.org/10.1145/3528223.3530075.

[33] Vincent Bosboom, Matthias Schlottbom, and Felix Schwenninger. “On the unique
solvability of radiative transfer equations with polarization”. In: arXiv preprint

arXiv:2203.03233 (Mar. 2022).

[34] James T Kajiya. “The rendering equation”. In: ACM Siggraph Computer Graphics.
Ed. by David C. Evans and Russell J. Athay. Vol. 20. 4. ACM. ACM, July 1986,
pp. 157–164. doi: 10.1145/280811.280987.

[35] Subrahmanyan Chandrasekhar. Radiative transfer. New York: Dover publications,
Mar. 1960, pp. 27–57.

188

https://doi.org/10.1364/JOSA.25.000361
https://doi.org/10.1364/JOSA.25.000361
http://opg.optica.org/abstract.cfm?URI=josa-25-11-361
https://doi.org/https://doi.org/10.1111/cgf.12676
https://doi.org/https://doi.org/10.1111/cgf.12676
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12676
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12676
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12676
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12676
https://doi.org/10.1145/3414685.3417841
https://doi.org/10.1145/3414685.3417841
https://doi.org/10.1145/3386569.3392387
https://doi.org/10.1145/3386569.3392387
https://doi.org/10.1145/3386569.3392387
https://doi.org/10.1145/3528223.3530075
https://doi.org/10.1145/3528223.3530075
https://doi.org/10.1145/280811.280987

References

[36] Chia-Yin Tsai, Aswin C Sankaranarayanan, and Ioannis Gkioulekas. “Beyond
Volumetric Albedo–A Surface Optimization Framework for Non-Line-Of-Sight
Imaging”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition. IEEE, June 2019, pp. 1545–1555. doi: 10.1109/cvpr.2019.
00164. url: http://openaccess.thecvf.com/content_CVPR_2019/html/
Tsai_Beyond_Volumetric_Albedo_--_A_Surface_Optimization_Framework_

for_Non-Line-Of-Sight_CVPR_2019_paper.html.

[37] Kenneth M Case. Linear transport theory. Addison-Wesley Publishing Company,
Oct. 1967. doi: 10.1063/1.3034554.

[38] James T. Kajiya and Brian P Von Herzen. “Ray Tracing Volume Densities”. In:
SIGGRAPH Comput. Graph. 18.3 (Jan. 1984). Ed. by Hank Christiansen, 165–174.
issn: 0097-8930. doi: 10.1145/964965.808594. url: https://doi.org/10.
1145/964965.808594.

[39] Jenni Heino, Simon Arridge, Jan Sikora, and Erkki Somersalo. “Anisotropic ef-
fects in highly scattering media”. In: Phys. Rev. E 68 (3 Sept. 2003), p. 031908. issn:
1063-651X. doi: 10.1103/PhysRevE.68.031908. url: https://link.aps.org/
doi/10.1103/PhysRevE.68.031908.

[40] A Kienle, FK Forster, and R Hibst. “Anisotropy of light propagation in biological
tissue”. In: Optics letters 29.22 (Nov. 2004), pp. 2617–2619. issn: 0146-9592.

[41] Juha Heiskala, Ilkka Nissilä, Tuomas Neuvonen, Seppo Järvenpää, and Erkki Som-
ersalo. “Modeling anisotropic light propagation in a realistic model of the hu-
man head”. In: Appl. Opt. 44.11 (Apr. 2005), pp. 2049–2057. issn: 0003-6935. doi:
10.1364/AO.44.002049. url: http://opg.optica.org/ao/abstract.cfm?
URI=ao-44-11-2049.

[42] Wenzel Jakob, Jonathan T. Moon, Adam Arbree, Kavita Bala, and Steve Marschner.
“A Radiative Transfer Framework for Rendering Materials with Anisotropic Struc-
ture”. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH) 29.10 (July
2010), 53:1–53:13. issn: 0730-0301. doi: 10.1145/1778765.1778790. url: http:
//www.cs.cornell.edu/projects/diffusion- sg10/diffusion- sg10-

tr.pdf.

[43] Alexander B. Kostinski. “On the extinction of radiation by a homogeneous but
spatially correlated random medium”. In: J. Opt. Soc. Am. A 18.8 (Aug. 2001),
pp. 1929–1933. issn: 1084-7529. doi: 10.1364/JOSAA.18.001929. url: http:
//opg.optica.org/josaa/abstract.cfm?URI=josaa-18-8-1929.

189

https://doi.org/10.1109/cvpr.2019.00164
https://doi.org/10.1109/cvpr.2019.00164
http://openaccess.thecvf.com/content_CVPR_2019/html/Tsai_Beyond_Volumetric_Albedo_--_A_Surface_Optimization_Framework_for_Non-Line-Of-Sight_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tsai_Beyond_Volumetric_Albedo_--_A_Surface_Optimization_Framework_for_Non-Line-Of-Sight_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tsai_Beyond_Volumetric_Albedo_--_A_Surface_Optimization_Framework_for_Non-Line-Of-Sight_CVPR_2019_paper.html
https://doi.org/10.1063/1.3034554
https://doi.org/10.1145/964965.808594
https://doi.org/10.1145/964965.808594
https://doi.org/10.1145/964965.808594
https://doi.org/10.1103/PhysRevE.68.031908
https://link.aps.org/doi/10.1103/PhysRevE.68.031908
https://link.aps.org/doi/10.1103/PhysRevE.68.031908
https://doi.org/10.1364/AO.44.002049
http://opg.optica.org/ao/abstract.cfm?URI=ao-44-11-2049
http://opg.optica.org/ao/abstract.cfm?URI=ao-44-11-2049
https://doi.org/10.1145/1778765.1778790
http://www.cs.cornell.edu/projects/diffusion-sg10/diffusion-sg10-tr.pdf
http://www.cs.cornell.edu/projects/diffusion-sg10/diffusion-sg10-tr.pdf
http://www.cs.cornell.edu/projects/diffusion-sg10/diffusion-sg10-tr.pdf
https://doi.org/10.1364/JOSAA.18.001929
http://opg.optica.org/josaa/abstract.cfm?URI=josaa-18-8-1929
http://opg.optica.org/josaa/abstract.cfm?URI=josaa-18-8-1929

References

[44] Edward W. Larsen and Richard Vasques. “A generalized linear Boltzmann equa-
tion for non-classical particle transport”. In: Journal of Quantitative Spectroscopy
and Radiative Transfer 112.4 (Mar. 2011). 2009 International Conference on Math-
ematics and Computational Methods (M&C 2009), pp. 619–631. issn: 0022-4073.
doi: https : / / doi . org / 10 . 1016 / j . jqsrt . 2010 . 07 . 003. url: https :
//www.sciencedirect.com/science/article/pii/S0022407310002827.

[45] Adrian Jarabo, Carlos Aliaga, and Diego Gutierrez. “A Radiative Transfer Frame-
work for Spatially-Correlated Materials”. In: ACM Trans. Graph. 37.4 (July 2018),
pp. 1–13. issn: 0730-0301. doi: 10.1145/3197517.3201282. url: https://doi.
org/10.1145/3197517.3201282.

[46] Benedikt Bitterli, Srinath Ravichandran, Thomas Müller, Magnus Wrenninge, Jan
Novák, Steve Marschner, and Wojciech Jarosz. “A radiative transfer framework
for non-exponential media”. In: ACM Transactions on Graphics (Proceedings of

SIGGRAPHAsia) 37.6 (Nov. 2018), 225:1–225:17. issn: 0730-0301. doi: 10/gfz2cm.

[47] Peter Shirley, Changyaw Wang, and Kurt Zimmerman. “Monte Carlo Techniques
for Direct Lighting Calculations”. In: ACM Trans. Graph. 15.1 (Jan. 1996), 1–36.
issn: 0730-0301. doi: 10.1145/226150.226151. url: https://doi.org/10.
1145/226150.226151.

[48] Pat Hanrahan and Wolfgang Krueger. “Reflection from Layered Surfaces Due to
Subsurface Scattering”. In: Proceedings of the 20th Annual Conference on Com-

puter Graphics and Interactive Techniques. SIGGRAPH ’93. Anaheim, CA: Associ-
ation for Computing Machinery, 1993, 165–174. isbn: 0897916018. doi: 10.1145/
166117.166139. url: https://doi.org/10.1145/166117.166139.

[49] Eric Veach and Leonidas Guibas. “Bidirectional estimators for light transport”. In:
Photorealistic Rendering Techniques. Springer, 1995, pp. 145–167. isbn: 9783642878275.
doi: 10.1007/978-3-642-87825-1_11. url: http://www.cs.jhu.edu/
~misha/ReadingSeminar/Papers/Veach94.pdf.

[50] Henrik Wann Jensen. Realistic image synthesis using photon mapping. Vol. 364.
Ak Peters Natick, July 2001. isbn: 9781568811475. doi: 10.1201/b10685.

[51] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. “Progressive Photon
Mapping”. In:ACMSIGGRAPHAsia 2008 Papers. Vol. 27. SIGGRAPH Asia ’08. Sin-
gapore: Association for Computing Machinery, 2008, p. 130. isbn: 9781450318310.
doi: 10.1145/1457515.1409083. url: https://doi.org/10.1145/1457515.
1409083.

190

https://doi.org/https://doi.org/10.1016/j.jqsrt.2010.07.003
https://www.sciencedirect.com/science/article/pii/S0022407310002827
https://www.sciencedirect.com/science/article/pii/S0022407310002827
https://doi.org/10.1145/3197517.3201282
https://doi.org/10.1145/3197517.3201282
https://doi.org/10.1145/3197517.3201282
https://doi.org/10/gfz2cm
https://doi.org/10.1145/226150.226151
https://doi.org/10.1145/226150.226151
https://doi.org/10.1145/226150.226151
https://doi.org/10.1145/166117.166139
https://doi.org/10.1145/166117.166139
https://doi.org/10.1145/166117.166139
https://doi.org/10.1007/978-3-642-87825-1_11
http://www.cs.jhu.edu/~misha/ReadingSeminar/Papers/Veach94.pdf
http://www.cs.jhu.edu/~misha/ReadingSeminar/Papers/Veach94.pdf
https://doi.org/10.1201/b10685
https://doi.org/10.1145/1457515.1409083
https://doi.org/10.1145/1457515.1409083
https://doi.org/10.1145/1457515.1409083

References

[52] Alexander Keller. “Instant Radiosity”. In: Proceedings of the 24th Annual Con-

ference on Computer Graphics and Interactive Techniques. SIGGRAPH ’97. USA:
ACM Press/Addison-Wesley Publishing Co., 1997, 49–56. isbn: 0897918967. doi:
10.1145/258734.258769. url: https://doi.org/10.1145/258734.258769.

[53] Wenzel Jakob. “Light Transport On Path-Space Manifolds”. PhD thesis. Cornell
University, 2013.

[54] Johannes Hanika, Marc Droske, and Luca Fascione. “Manifold Next Event Esti-
mation”. In: Computer Graphics Forum 34.4 (2015), pp. 87–97. doi: https://doi.
org/10.1111/cgf.12681. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1111/cgf.12681. url: https://onlinelibrary.wiley.com/doi/
abs/10.1111/cgf.12681.

[55] Tizian Zeltner, Iliyan Georgiev, and Wenzel Jakob. “Specular Manifold Sampling
for Rendering High-Frequency Caustics and Glints”. In: Transactions on Graph-

ics (Proceedings of SIGGRAPH) 39.4 (July 2020), p. 149. issn: 0730-0301. doi: 10.
1145/3386569.3392408.

[56] Adam Smith James Skorupski James Davis. “Transient Rendering”. In: (2008).

[57] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. “Differentiable
Monte Carlo Ray Tracing Through Edge Sampling”. In: ACM Transactions on

Graphics 37.6 (Dec. 2018), pp. 1–11. issn: 0730-0301. doi: 10.1145/3272127.
3275109. url: https://dl.acm.org/doi/pdf/10.1145/3272127.3275109.

[58] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and

techniques of algorithmic differentiation. Vol. 105. SIAM, 2008, pp. I–XXIV, 1–369.

[59] R. E. Wengert. “A Simple Automatic Derivative Evaluation Program”. In: Com-

mun. ACM 7.8 (Aug. 1964), 463–464. issn: 0001-0782. doi: 10.1145/355586.
364791. url: https://doi.org/10.1145/355586.364791.

[60] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, Vol. 1”. In: Cambridge, MA,
USA: MIT Press, 1986. Chap. Learning Internal Representations by Error Propa-
gation.

[61] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, Y.Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.

191

https://doi.org/10.1145/258734.258769
https://doi.org/10.1145/258734.258769
https://doi.org/https://doi.org/10.1111/cgf.12681
https://doi.org/https://doi.org/10.1111/cgf.12681
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12681
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12681
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12681
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12681
https://doi.org/10.1145/3386569.3392408
https://doi.org/10.1145/3386569.3392408
https://doi.org/10.1145/3272127.3275109
https://doi.org/10.1145/3272127.3275109
https://dl.acm.org/doi/pdf/10.1145/3272127.3275109
https://doi.org/10.1145/355586.364791
https://doi.org/10.1145/355586.364791
https://doi.org/10.1145/355586.364791

References

Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems. 2015.

[62] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
“Automatic differentiation in PyTorch”. In: (2017).

[63] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy

programs. Version 0.3.13. 2018. url: http://github.com/google/jax.

[64] Yu M Volin and GM Ostrovskii. “Automatic computation of derivatives with the
use of the multilevel differentiating technique—1. Algorithmic basis”. In: Com-

puters & mathematics with applications 11.11 (Nov. 1985), pp. 1099–1114. issn:
0898-1221. doi: 10.1016/0898-1221(85)90188-9.

[65] Lev Semenovich Pontryagin.Mathematical theory of optimal processes. CRC Press,
May 1962. isbn: 9780203749319. doi: 10.1201/9780203749319.

[66] Joel Andersson. “A general-purpose software framework for dynamic optimiza-
tion”. PhD thesis. KU Leuven, 2013.

[67] Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. “Fluid control
using the adjoint method”. In: ACM Transactions On Graphics (TOG). Vol. 23. 3.
ACM. ACM Press, Aug. 2004, pp. 449–456. doi: 10.1145/1186562.1015744.

[68] Shayan Hoshyari, Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer.
“Vibration-minimizing motion retargeting for robotic characters”. In:ACMTrans-

actions on Graphics (TOG) 38.4 (Aug. 2019), pp. 1–14. issn: 0730-0301. doi: 10.
1145/3306346.3323034.

[69] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. “Neu-
ral ordinary differential equations”. In: Advances in neural information processing

systems. Ed. by Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grau-
man, Nicolò Cesa-Bianchi, and Roman Garnett. June 2018, pp. 6571–6583. url:
https://dl.acm.org/doi/10.5555/3327757.3327764.

[70] Andrew M Bradley. PDE-constrained optimization and the adjoint method. Tech.
rep. Technical Report. Stanford University., 2013. url: https://cs.stanford.
edu/~ambrad/adjoint_tutorial.pdf.

192

http://github.com/google/jax
https://doi.org/10.1016/0898-1221(85)90188-9
https://doi.org/10.1201/9780203749319
https://doi.org/10.1145/1186562.1015744
https://doi.org/10.1145/3306346.3323034
https://doi.org/10.1145/3306346.3323034
https://dl.acm.org/doi/10.5555/3327757.3327764
https://cs.stanford.edu/~ambrad/adjoint_tutorial.pdf
https://cs.stanford.edu/~ambrad/adjoint_tutorial.pdf

References

[71] Matt Pharr and William R Mark. “ispc: A SPMD compiler for high-performance
CPU programming”. In: 2012 Innovative Parallel Computing (InPar). IEEE. IEEE,
May 2012. doi: 10.1109/inpar.2012.6339601.

[72] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. “Halide: A Language and Compiler for Opti-
mizing Parallelism, Locality, and Recomputation in Image Processing Pipelines”.
In: SIGPLAN Notices 48.6 (June 2013). Ed. by Hans-Juergen Boehm and Cormac
Flanagan, pp. 519–530. doi: 10.1145/2491956.2462176.

[73] Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-
Kelley. “Differentiable programming for image processing and deep learning in
Halide”. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH) 37.4 (Aug.
2018), pp. 1–13. issn: 0730-0301. doi: 10.1145/3197517.3201383. url: https:
//dl.acm.org/doi/pdf/10.1145/3197517.3201383.

[74] Luke Anderson, Tzu-Mao Li, Jaakko Lehtinen, and Frédo Durand. “Aether: An
embedded domain specific sampling language for Monte Carlo rendering”. In:
ACM Transactions on Graphics 36.4 (2017), 99:1–99:16. doi: 10.1145/3072959.
3073704.

[75] Arsène Pérard-Gayot, Richard Membarth, Roland Leißa, Sebastian Hack, and
Philipp Slusallek. “Rodent: Generating Renderers without Writing a Generator”.
In: ACM Transactions on Graphics 38.4 (July 2019), 40:1–40:12. doi: 10.1145/
3306346.3322955.

[76] Roland Leißa, Klaas Boesche, Sebastian Hack, Arsène Pérard-Gayot, Richard Mem-
barth, Philipp Slusallek, André Müller, and Bertil Schmidt. “AnyDSL: A Par-
tial Evaluation Framework for Programming High-Performance Libraries”. In:
Proceedings of the ACM on Programming Languages (PACMPL) 2.OOPSLA (Nov.
2018), pp. 1–30. issn: 2475-1421. doi: 10.1145/3276489. url: https://doi.
org/10.1145/3276489.

[77] Yuting Yang, Connelly Barnes, Andrew Adams, and Adam Finkelstein. “A𝛿 : Au-
todiff for Discontinuous Programs - Applied to Shaders”. In: SIGGRAPH, to ap-
pear. Aug. 2022.

[78] Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li,
and Jonathan Ragan-Kelley. “Systematically differentiating parametric disconti-
nuities”. In: ACM Transactions on Graphics (TOG) 40.4 (Aug. 2021), pp. 1–18. issn:

193

https://doi.org/10.1109/inpar.2012.6339601
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/3197517.3201383
https://dl.acm.org/doi/pdf/10.1145/3197517.3201383
https://dl.acm.org/doi/pdf/10.1145/3197517.3201383
https://doi.org/10.1145/3072959.3073704
https://doi.org/10.1145/3072959.3073704
https://doi.org/10.1145/3306346.3322955
https://doi.org/10.1145/3306346.3322955
https://doi.org/10.1145/3276489
https://doi.org/10.1145/3276489
https://doi.org/10.1145/3276489

References

0730-0301. doi: 10.1145/3476576.3476671. url: https://dl.acm.org/doi/
pdf/10.1145/3450626.3459775.

[79] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, De-
lio Vicini, Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and
Ziyi Zhang. Mitsuba 3 renderer. Version 3.0.0. 2022. url: https://mitsuba-
renderer.org.

[80] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. “DR.JIT: A
Just-in-Time Compiler for Differentiable Rendering”. In: ACM Trans. Graph. 41.4
(July 2022), pp. 1–19. issn: 0730-0301. doi: 10.1145/3528223.3530099. url:
https://doi.org/10.1145/3528223.3530099.

[81] Wenzel Jakob and Steve Marschner. “Manifold exploration: a Markov Chain Monte
Carlo technique for rendering scenes with difficult specular transport”. In: ACM
Transactions onGraphics 31.4 (2012), 58:1–58:13. doi: 10.1145/2185520.2185554.

[82] Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jakob, and Frédo Du-
rand. “Anisotropic gaussian mutations for metropolis light transport through
hessian-hamiltonian dynamics”. In: ACM Transactions on Graphics 34.6 (Nov.
2015), pp. 1–13. issn: 0730-0301. doi: 10.1145/2816795.2818084.

[83] H Rief, EM Gelbard, RW Schaefer, and KS Smith. “Review of Monte Carlo tech-
niques for analyzing reactor perturbations”. In: Nuclear Science and Engineering

92.2 (Feb. 1986), pp. 289–297. issn: 0029-5639. doi: 10.13182/nse86-a18178.

[84] Iván Lux and László Koblinger. Monte Carlo particle transport methods: neutron

and photon calculations. CRC press, May 1991. isbn: 9781351074834. doi: 10.
1201/9781351074834.

[85] M. C. G. Hall. “Cross-Section Adjustment with Monte Carlo Sensitivities: Appli-
cation to the Winfrith Iron Benchmark”. In: Nuclear Science and Engineering 81.3
(1982), pp. 423–431. doi: 10.13182/NSE82-A20283. eprint: https://doi.org/
10.13182/NSE82-A20283. url: https://doi.org/10.13182/NSE82-A20283.

[86] Matthew M. Loper and Michael J. Black. “OpenDR: An Approximate Differen-
tiable Renderer”. In: ECCV. Ed. by David J. Fleet, Tomás Pajdla, Bernt Schiele,
and Tinne Tuytelaars. Vol. 8695. Springer International Publishing, Sept. 2014,
pp. 154–169. isbn: 9783319105833. doi: 10.1007/978-3-319-10584-0_11. url:
http://files.is.tue.mpg.de/black/papers/OpenDR.pdf.

194

https://doi.org/10.1145/3476576.3476671
https://dl.acm.org/doi/pdf/10.1145/3450626.3459775
https://dl.acm.org/doi/pdf/10.1145/3450626.3459775
https://mitsuba-renderer.org
https://mitsuba-renderer.org
https://doi.org/10.1145/3528223.3530099
https://doi.org/10.1145/3528223.3530099
https://doi.org/10.1145/2185520.2185554
https://doi.org/10.1145/2816795.2818084
https://doi.org/10.13182/nse86-a18178
https://doi.org/10.1201/9781351074834
https://doi.org/10.1201/9781351074834
https://doi.org/10.13182/NSE82-A20283
https://doi.org/10.13182/NSE82-A20283
https://doi.org/10.13182/NSE82-A20283
https://doi.org/10.13182/NSE82-A20283
https://doi.org/10.1007/978-3-319-10584-0_11
http://files.is.tue.mpg.de/black/papers/OpenDR.pdf

References

[87] Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Chris-
tian Theobalt. “A Versatile Scene Model with Differentiable Visibility Applied to
Generative Pose Estimation”. In: Proceedings of ICCV 2015. Vol. abs/1602.03725.
IEEE, Dec. 2015. doi: 10.1109/iccv.2015.94. url: http://arxiv.org/abs/
1602.03725.

[88] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. “Neural 3d mesh ren-
derer”. In: Proceedings of the IEEE conference on computer vision and pattern recog-

nition. IEEE, June 2018, pp. 3907–3916. doi: 10.1109/cvpr.2018.00411. url:
http://openaccess.thecvf.com/content_cvpr_2018/html/Kato_Neural_

3D_Mesh_CVPR_2018_paper.html.

[89] Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. “Soft Rasterizer: Differen-
tiable Rendering for Unsupervised Single-View Mesh Reconstruction”. In: CoRR
abs/1901.05567 (2019). arXiv: 1901.05567. url: http://arxiv.org/abs/1901.
05567.

[90] Felix Petersen, Amit H. Bermano, Oliver Deussen, and Daniel Cohen-Or. “Pix2Vex:
Image-to-Geometry Reconstruction using a Smooth Differentiable Renderer”. In:
CoRR abs/1903.11149 (2019). arXiv: 1903.11149. url: http://arxiv.org/abs/
1903.11149.

[91] Felix Petersen, Bastian Goldluecke, Christian Borgelt, and Oliver Deussen. “GenDR:
A Generalized Differentiable Renderer”. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). Vol. abs/2204.13845.
June 2022, pp. 4002–4011. doi: 10.48550/arxiv.2204.13845. url: https:
//doi.org/10.48550/arXiv.2204.13845.

[92] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and
Timo Aila. “Modular primitives for high-performance differentiable rendering”.
In: ACM Transactions on Graphics (TOG) 39.6 (Dec. 2020), pp. 1–14. issn: 0730-
0301. doi: 10.1145/3414685.3417861. url: https://research.aalto.fi/
files/74913509/SCI_Laine2020diffrast_paper.pdf.

[93] Yang Zhou, Lifan Wu, Ravi Ramamoorthi, and Ling-Qi Yan. “Vectorization for
Fast, Analytic, and Differentiable Visibility”. In: ACM Transactions on Graphics

(TOG) 40.3 (July 2021), pp. 1–21. issn: 0730-0301. doi: 10.1145/3452097. url:
https://dl.acm.org/doi/pdf/10.1145/3452097.

195

https://doi.org/10.1109/iccv.2015.94
http://arxiv.org/abs/1602.03725
http://arxiv.org/abs/1602.03725
https://doi.org/10.1109/cvpr.2018.00411
http://openaccess.thecvf.com/content_cvpr_2018/html/Kato_Neural_3D_Mesh_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Kato_Neural_3D_Mesh_CVPR_2018_paper.html
https://arxiv.org/abs/1901.05567
http://arxiv.org/abs/1901.05567
http://arxiv.org/abs/1901.05567
https://arxiv.org/abs/1903.11149
http://arxiv.org/abs/1903.11149
http://arxiv.org/abs/1903.11149
https://doi.org/10.48550/arxiv.2204.13845
https://doi.org/10.48550/arXiv.2204.13845
https://doi.org/10.48550/arXiv.2204.13845
https://doi.org/10.1145/3414685.3417861
https://research.aalto.fi/files/74913509/SCI_Laine2020diffrast_paper.pdf
https://research.aalto.fi/files/74913509/SCI_Laine2020diffrast_paper.pdf
https://doi.org/10.1145/3452097
https://dl.acm.org/doi/pdf/10.1145/3452097

References

[94] Tzu-Mao Li, Michal Lukáč, Michaël Gharbi, and Jonathan Ragan-Kelley. “Differ-
entiable Vector Graphics Rasterization for Editing and Learning”. In: ACM Trans.

Graph. 39.6 (Nov. 2020), pp. 1–15. issn: 0730-0301. doi: 10 . 1145 / 3414685 .
3417871. url: https://doi.org/10.1145/3414685.3417871.

[95] Volker Blanz and Thomas Vetter. “A morphable model for the synthesis of 3D
faces”. In: SIGGRAPH. ACM Press, 1999, pp. 187–194. doi: 10.1145/311535.
311556. url: https : / / pure . mpg . de / pubman / item / item _ 1793809 _ 3 /
component/file_3271006/SIGGRAPH-1999-Blanz.pdf.

[96] Ravi Ramamoorthi and Pat Hanrahan. “A Signal-Processing Framework for In-
verse Rendering”. In: Proceedings of the 28th Annual Conference on Computer

Graphics and Interactive Techniques. SIGGRAPH ’01. New York, NY, USA: As-
sociation for Computing Machinery, 2001, 117–128. isbn: 158113374X. doi: 10.
1145/383259.383271. url: https://doi.org/10.1145/383259.383271.

[97] Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner.
“Matching Real Fabrics with Micro-Appearance Models”. In: ACM Trans. Graph.

35.1 (Dec. 2016), pp. 1–26. issn: 0730-0301. doi: 10.1145/2818648. url: https:
//doi.org/10.1145/2818648.

[98] Shuang Zhao, Fujun Luan, and Kavita Bala. “Fitting procedural yarn models for
realistic cloth rendering”. In: ACM Trans. Graph. 35.4 (July 2016), pp. 1–11. issn:
0730-0301. doi: 10.1145/2897824.2925932. url: https://escholarship.
org/content/qt2fw2w3gs/qt2fw2w3gs.pdf?t=okn0gj.

[99] Ioannis Gkioulekas, Anat Levin, and Todd Zickler. “An evaluation of computa-
tional imaging techniques for heterogeneous inverse scattering”. In: European
Conference on Computer Vision. Ed. by Bastian Leibe, Jiri Matas, Nicu Sebe, and
Max Welling. Vol. 9907. Springer. Springer International Publishing, 2016, pp. 685–
701. isbn: 9783319464862. doi: 10.1007/978-3-319-46487-9_42. url: https:
//zenodo.org/record/4292250/files/inverse.pdf.

[100] Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. “Downsampling
Scattering Parameters for Rendering Anisotropic Media”. In: ACM Trans. Graph.

35.6 (Nov. 2016), pp. 1–11. issn: 0730-0301. doi: 10.1145/2980179.2980228.
url: https://doi.org/10.1145/2980179.2980228.

[101] Chengqian Che, Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas.
“Inverse Transport Networks”. In: arXiv preprint arXiv:1809.10820 abs/1809.10820
(Sept. 2018). url: http://arxiv.org/abs/1809.10820.

196

https://doi.org/10.1145/3414685.3417871
https://doi.org/10.1145/3414685.3417871
https://doi.org/10.1145/3414685.3417871
https://doi.org/10.1145/311535.311556
https://doi.org/10.1145/311535.311556
https://pure.mpg.de/pubman/item/item_1793809_3/component/file_3271006/SIGGRAPH-1999-Blanz.pdf
https://pure.mpg.de/pubman/item/item_1793809_3/component/file_3271006/SIGGRAPH-1999-Blanz.pdf
https://doi.org/10.1145/383259.383271
https://doi.org/10.1145/383259.383271
https://doi.org/10.1145/383259.383271
https://doi.org/10.1145/2818648
https://doi.org/10.1145/2818648
https://doi.org/10.1145/2818648
https://doi.org/10.1145/2897824.2925932
https://escholarship.org/content/qt2fw2w3gs/qt2fw2w3gs.pdf?t=okn0gj
https://escholarship.org/content/qt2fw2w3gs/qt2fw2w3gs.pdf?t=okn0gj
https://doi.org/10.1007/978-3-319-46487-9_42
https://zenodo.org/record/4292250/files/inverse.pdf
https://zenodo.org/record/4292250/files/inverse.pdf
https://doi.org/10.1145/2980179.2980228
https://doi.org/10.1145/2980179.2980228
http://arxiv.org/abs/1809.10820

References

[102] Zdravko Velinov, Marios Papas, Derek Bradley, Paulo Gotardo, Parsa Mirdehghan,
Steve Marschner, Jan Novák, and Thabo Beeler. “Appearance Capture and Mod-
eling of Human Teeth”. In: ACM Transactions on Graphics 37.6 (Dec. 2018), pp. 1–
13. issn: 0730-0301. doi: 10.1145/3272127.3275098.

[103] Shuang Zhao, Ravi Ramamoorthi, and Kavita Bala. “High-order similarity rela-
tions in radiative transfer”. In: ACM Transactions on Graphics (TOG) 33.4 (July
2014), pp. 1–12. issn: 0730-0301. doi: 10.1145/2601097.2601104. url: http:
//shuangz.com/projects/similarity-sg14/similarity-sg14.pdf.

[104] Mike Kasper, Nima Keivan, Gabe Sibley, and Christoffer R. Heckman. “Light
Source Estimation with Analytical Path-tracing”. In: CoRR abs/1701.04101 (2017).
url: http://arxiv.org/abs/1701.04101.

[105] Yizhou Yu, Paul Debevec, Jitendra Malik, and Tim Hawkins. “Inverse global il-
lumination: Recovering reflectance models of real scenes from photographs”. In:
SIGGRAPH. 1999, pp. 215–224. doi: 10.1145/311535.311559.

[106] Edward Zhang, Michael F Cohen, and Brian Curless. “Emptying, refurnishing,
and relighting indoor spaces”. In: ACM Trans. Graph. 35.6 (Nov. 2016), pp. 1–14.
issn: 0730-0301. doi: 10.1145/2980179.2982432. url: http://dl.acm.org/
ft_gateway.cfm?id=2982432&type=pdf.

[107] Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoor-
thi, and Shuang Zhao. “A differential theory of radiative transfer”. In:ACMTrans-

actions on Graphics (TOG) 38.6 (Dec. 2019), pp. 1–16. issn: 0730-0301. doi: 10.
1145/3355089.3356522.

[108] Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao.
“Path-Space Differentiable Rendering”. In: ACM Trans. Graph. 39.4 (Aug. 2020),
143:1–143:19. issn: 0730-0301. doi: 10.1145/3386569.3392383.

[109] Cheng Zhang, Zihan Yu, and Shuang Zhao. “Path-Space Differentiable Rendering
of Participating Media”. In: ACM Trans. Graph. 40.4 (Aug. 2021), 76:1–76:15. issn:
0730-0301. doi: 10.1145/3476576.3476631. url: https://dl.acm.org/doi/
pdf/10.1145/3450626.3459782.

[110] Osborne Reynolds. Papers on mechanical and physical subjects. Vol. 3. The Uni-
versity Press, 1903.

197

https://doi.org/10.1145/3272127.3275098
https://doi.org/10.1145/2601097.2601104
http://shuangz.com/projects/similarity-sg14/similarity-sg14.pdf
http://shuangz.com/projects/similarity-sg14/similarity-sg14.pdf
http://arxiv.org/abs/1701.04101
https://doi.org/10.1145/311535.311559
https://doi.org/10.1145/2980179.2982432
http://dl.acm.org/ft_gateway.cfm?id=2982432&type=pdf
http://dl.acm.org/ft_gateway.cfm?id=2982432&type=pdf
https://doi.org/10.1145/3355089.3356522
https://doi.org/10.1145/3355089.3356522
https://doi.org/10.1145/3386569.3392383
https://doi.org/10.1145/3476576.3476631
https://dl.acm.org/doi/pdf/10.1145/3450626.3459782
https://dl.acm.org/doi/pdf/10.1145/3450626.3459782

References

[111] Kai Yan, Christoph Lassner, Brian Budge, Zhao Dong, and Shuang Zhao. “Ef-
ficient Estimation of Boundary Integrals for Path-Space Differentiable Render-
ing”. In: ACM Trans. Graph. 41.4 (July 2022), 123:1–123:13. issn: 0730-0301. doi:
10.1145/3528223.3530080.

[112] Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. “Reparameterizing
Discontinuous Integrands for Differentiable Rendering”. In: ACM Transactions

on Graphics 38.6 (Dec. 2019), pp. 1–14. issn: 0730-0301. doi: 10.1145/3355089.
3356510. url: https://hal.inria.fr/hal-02497191/file/differentiable-
pt-cov.pdf.

[113] Sai Bangaru, Tzu-Mao Li, and Frédo Durand. “Unbiased Warped-Area Sampling
for Differentiable Rendering”. In: ACM Trans. Graph. 39.6 (Dec. 2020), 245:1–
245:18. issn: 0730-0301. doi: 10.1145/3414685.3417833. url: https://dl.
acm.org/doi/pdf/10.1145/3414685.3417833.

[114] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. “Differentiable Signed Dis-
tance Function Rendering”. In: Transactions onGraphics (Proceedings of SIGGRAPH)
41.4 (July 2022), 125:1–125:18. issn: 0730-0301. doi: 10.1145/3528223.3530139.

[115] Cheng Zhang, Zhao Dong, Michael Doggett, and Shuang Zhao. “Antithetic sam-
pling for Monte Carlo differentiable rendering”. In: ACM Transactions on Graph-

ics (TOG) 40.4 (Aug. 2021), pp. 1–12. issn: 0730-0301. doi: 10.1145/3476576.
3476632. url: https://dl.acm.org/doi/pdf/10.1145/3450626.3459783.

[116] Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. “Real-Time
Neural Radiance Caching for Path Tracing”. In: ACM Trans. Graph. 40.4 (July
2021), pp. 1–16. issn: 0730-0301. doi: 10.1145/3450626.3459812. url: https:
//doi.org/10.1145/3450626.3459812.

[117] Guilin Liu, Duygu Ceylan, Ersin Yumer, Jimei Yang, and Jyh-Ming Lien. “Material
Editing Using a Physically Based Rendering Network”. In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV). IEEE, Oct. 2017, pp. 2280–
2288. doi: 10.1109/iccv.2017.248. url: http://arxiv.org/pdf/1708.
00106.

[118] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. “NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis”. In: ECCV. Vol. 65. Springer International Publishing, Mar.
2020, pp. 405–421. isbn: 9783030584511. doi: 10.1007/978-3-030-58452-8_24.
url: http://arxiv.org/pdf/2003.08934.

198

https://doi.org/10.1145/3528223.3530080
https://doi.org/10.1145/3355089.3356510
https://doi.org/10.1145/3355089.3356510
https://hal.inria.fr/hal-02497191/file/differentiable-pt-cov.pdf
https://hal.inria.fr/hal-02497191/file/differentiable-pt-cov.pdf
https://doi.org/10.1145/3414685.3417833
https://dl.acm.org/doi/pdf/10.1145/3414685.3417833
https://dl.acm.org/doi/pdf/10.1145/3414685.3417833
https://doi.org/10.1145/3528223.3530139
https://doi.org/10.1145/3476576.3476632
https://doi.org/10.1145/3476576.3476632
https://dl.acm.org/doi/pdf/10.1145/3450626.3459783
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1109/iccv.2017.248
http://arxiv.org/pdf/1708.00106
http://arxiv.org/pdf/1708.00106
https://doi.org/10.1007/978-3-030-58452-8_24
http://arxiv.org/pdf/2003.08934

References

[119] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. “Plenoxels: Radiance Fields without Neural Networks”.
In: arXiv:2112.05131 abs/2112.05131 (Dec. 2021). url: https://arxiv.org/abs/
2112.05131.

[120] Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy J. Mitra. “ReLU
Fields: The Little Non-linearity That Could”. In: Transactions on Graphics (Pro-

ceedings of SIGGRAPH) 41.4 (July 2022). Ed. by Munkhtsetseg Nandigjav, Niloy J.
Mitra, and Aaron Hertzmann, 13:1–13:8. doi: 10.1145/3528233.3530707. url:
https://dl.acm.org/doi/pdf/10.1145/3528233.3530707.

[121] Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin.
“Inverse Volume Rendering with Material Dictionaries”. In: ACM Transactions

on Graphics 32.6 (Nov. 2013), pp. 1–13. issn: 0730-0301. doi: 10.1145/2508363.
2508377.

[122] Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and Adrien
Bousseau. “Single-image SVBRDF Capture with a Rendering-aware Deep Net-
work”. In: ACM Trans. Graph. 37.4 (Aug. 2018), 128:1–128:15. issn: 0730-0301.
doi: 10.1145/3197517.3201378. url: https://dl.acm.org/doi/pdf/10.
1145/3197517.3201378.

[123] Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir
Mech, and Wojciech Matusik. “Match: differentiable material graphs for proce-
dural material capture”. In: 39 (2020), 196:1–196:15. doi: 10.1145/3414685.
3417781.

[124] Paul Guerrero, Miloš Hašan, Kalyan Sunkavalli, Radomír Měch, Tamy Boubekeur,
and Niloy J. Mitra. “MatFormer: A Generative Model for Procedural Materials”.
In: ACM Trans. Graph. 41.4 (July 2022). issn: 0730-0301. doi: 10.1145/3528223.
3530173. url: https://doi.org/10.1145/3528223.3530173.

[125] Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey, and Holly Rushmeier.
“An Inverse Procedural Modeling Pipeline for SVBRDF Maps”. In: ACM Trans.

Graph. 41.2 (Jan. 2022), pp. 1–17. issn: 0730-0301. doi: 10.1145/3502431. url:
https://doi.org/10.1145/3502431.

[126] Yiwei Hu, Paul Guerrero, Milos Hasan, Holly Rushmeier, and Valentin Deschain-
tre. “Node Graph Optimization Using Differentiable Proxies”. In:ACMSIGGRAPH

2022 Conference Proceedings. Ed. by Munkhtsetseg Nandigjav, Niloy J. Mitra, and
Aaron Hertzmann. SIGGRAPH ’22. Vancouver, BC, Canada: Association for Com-

199

https://arxiv.org/abs/2112.05131
https://arxiv.org/abs/2112.05131
https://doi.org/10.1145/3528233.3530707
https://dl.acm.org/doi/pdf/10.1145/3528233.3530707
https://doi.org/10.1145/2508363.2508377
https://doi.org/10.1145/2508363.2508377
https://doi.org/10.1145/3197517.3201378
https://dl.acm.org/doi/pdf/10.1145/3197517.3201378
https://dl.acm.org/doi/pdf/10.1145/3197517.3201378
https://doi.org/10.1145/3414685.3417781
https://doi.org/10.1145/3414685.3417781
https://doi.org/10.1145/3528223.3530173
https://doi.org/10.1145/3528223.3530173
https://doi.org/10.1145/3528223.3530173
https://doi.org/10.1145/3502431
https://doi.org/10.1145/3502431

References

puting Machinery, Aug. 2022, 5:1–5:9. isbn: 9781450393379. doi: 10.1145/3528233.
3530733. url: https://doi.org/10.1145/3528233.3530733.

[127] Fujun Luan, Shuang Zhao, Kavita Bala, and Zhao Dong. “Unified Shape and
SVBRDF Recovery using Differentiable Monte Carlo Rendering”. In: arXiv preprint
arXiv:2103.15208 40 (July 2021), pp. 101–113. issn: 0167-7055. url: http : / /
arxiv.org/pdf/2103.15208.

[128] Dejan Azinović, Tzu-Mao Li, Anton Kaplanyan, and Matthias Nießner. “Inverse
Path Tracing for Joint Material and Lighting Estimation”. In: Proceedings of Com-

puter Vision and Pattern Recognition (CVPR), IEEE. IEEE, June 2019, pp. 2447–
2456. doi: 10.1109/cvpr.2019.00255. url: http://openaccess.thecvf.
com/content_CVPR_2019/html/Azinovic_Inverse_Path_Tracing_for_

Joint_Material_and_Lighting_Estimation_CVPR_2019_paper.html.

[129] Qilin Sun, Congli Wang, Fu Qiang, Dun Xiong, and Heidrich Wolfgang. “End-to-
end complex lens design with differentiable ray tracing”. In: ACM Transactions

on Graphics 40.4 (2021), pp. 1–13.

[130] Thomas Klaus Nindel, Tomáš Iser, Tobias Rittig, Alexander Wilkie, and Jaroslav
Křivánek. “A Gradient-Based Framework for 3D Print Appearance Optimiza-
tion”. In: ACM Trans. Graph. 40.4 (July 2021), pp. 1–15. issn: 0730-0301. doi: 10.
1145/3450626.3459844. url: https://doi.org/10.1145/3450626.3459844.

[131] Adam Geva, Yoav Y Schechner, Yonatan Chernyak, and Rajiv Gupta. “X-ray com-
puted tomography through scatter”. In: Proceedings of The European Conference

on Computer Vision (ECCV). Ed. by Vittorio Ferrari, Martial Hebert, Cristian Smin-
chisescu, and Yair Weiss. Vol. 11218. Springer International Publishing, 2018,
pp. 34–50. isbn: 9783030012632. doi: 10.1007/978-3-030-01264-9_3.

[132] Yael Sde-Chen, Yoav Y. Schechner, Vadim Holodovsky, and Eshkol Eytan. “3DeepCT:
Learning volumetric scattering tomography of clouds”. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision. IEEE, Oct. 2021, pp. 5671–
5682. doi: 10.1109/iccv48922.2021.00562.

[133] Roi Ronen, Yoav Y. Schechner, and Eshkol Eytan. “4D Cloud Scattering Tomogra-
phy”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
IEEE, Oct. 2021, pp. 5520–5529. doi: 10.1109/iccv48922.2021.00547.

200

https://doi.org/10.1145/3528233.3530733
https://doi.org/10.1145/3528233.3530733
https://doi.org/10.1145/3528233.3530733
http://arxiv.org/pdf/2103.15208
http://arxiv.org/pdf/2103.15208
https://doi.org/10.1109/cvpr.2019.00255
http://openaccess.thecvf.com/content_CVPR_2019/html/Azinovic_Inverse_Path_Tracing_for_Joint_Material_and_Lighting_Estimation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Azinovic_Inverse_Path_Tracing_for_Joint_Material_and_Lighting_Estimation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Azinovic_Inverse_Path_Tracing_for_Joint_Material_and_Lighting_Estimation_CVPR_2019_paper.html
https://doi.org/10.1145/3450626.3459844
https://doi.org/10.1145/3450626.3459844
https://doi.org/10.1145/3450626.3459844
https://doi.org/10.1007/978-3-030-01264-9_3
https://doi.org/10.1109/iccv48922.2021.00562
https://doi.org/10.1109/iccv48922.2021.00547

References

[134] Tamar Loeub, Aviad Levis, Vadim Holodovsky, and Yoav Y Schechner. “Mono-
tonicity prior for cloud tomography”. In: Computer Vision–ECCV 2020: 16th Eu-

ropean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16.
Ed. by Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm.
Vol. 12363. Springer. Springer International Publishing, 2020, pp. 283–299. isbn:
9783030585228. doi: 10.1007/978-3-030-58523-5_17.

[135] Max Nussbaum, Ewan Schafer, Zizung Yoon, Denise Keil, and Enrico Stoll. “Spec-
tral Light Curve Simulation for Parameter Estimation from Space Debris”. In:
Aerospace 9.8 (July 2022), p. 403. issn: 2226-4310. doi: 10.3390/aerospace9080403.
url: https://www.mdpi.com/2226-4310/9/8/403.

[136] Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. “A first-order analysis
of lighting, shading, and shadows”. In: ACM Transactions on Graphics (TOG) 26.1
(Jan. 2007), p. 2. issn: 0730-0301. doi: 10.1145/1189762.1189764. url: https:
//academiccommons.columbia.edu/doi/10.7916/D8639XJP/download.

[137] Kevin G Jamieson, Robert Nowak, and Ben Recht. “Query Complexity of Derivative-
Free Optimization”. In: Advances in Neural Information Processing Systems 25. Ed.
by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger. Vol. abs/1209.2434.
Curran Associates, Inc., 2012, pp. 2672–2680. url: http://arxiv.org/abs/
1209.2434.

[138] James Arvo. “Analytic methods for simulated light transport”. PhD thesis. Yale
University, 1995.

[139] Thomas Müller, Markus Gross, and Jan Novák. “Practical Path Guiding for Effi-
cient Light-Transport Simulation”. In: Computer Graphics Forum 36.4 (June 2017),
pp. 91–100. issn: 0167-7055.

[140] Lukas Balles and Philipp Hennig. “Dissecting Adam: The Sign, Magnitude and
Variance of Stochastic Gradients”. In: Proceedings of the 35th International Con-

ference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, July 2018, pp. 404–413. url:
http://proceedings.mlr.press/v80/balles18a.html.

[141] Alain Petrowski, Gerard Dreyfus, and Claude Girault. “Performance analysis of
a pipelined backpropagation parallel algorithm”. In: IEEE Transactions on Neural

Networks 4.6 (1993), pp. 970–981. issn: 1045-9227. doi: 10.1109/72.286892.

201

https://doi.org/10.1007/978-3-030-58523-5_17
https://doi.org/10.3390/aerospace9080403
https://www.mdpi.com/2226-4310/9/8/403
https://doi.org/10.1145/1189762.1189764
https://academiccommons.columbia.edu/doi/10.7916/D8639XJP/download
https://academiccommons.columbia.edu/doi/10.7916/D8639XJP/download
http://arxiv.org/abs/1209.2434
http://arxiv.org/abs/1209.2434
http://proceedings.mlr.press/v80/balles18a.html
https://doi.org/10.1109/72.286892

References

[142] Oskar Elek, Denis Sumin, Ran Zhang, Tim Weyrich, Karol Myszkowski, Bernd
Bickel, Alexander Wilkie, and Jaroslav Křivánek. “Scattering-aware Texture Re-
production for 3D Printing”. In: ACM Transactions on Graphics 36.6 (Nov. 2017),
pp. 1–15. issn: 0730-0301. doi: 10.1145/3130800.3130890.

[143] Denis Sumin, Tobias Rittig, Vahid Babaei, Thomas Nindel, Alexander Wilkie, Pi-
otr Didyk, Bernd Bickel, Jaroslav Křivánek, Karol Myszkowski, and Tim Weyrich.
“Geometry-Aware Scattering Compensation for 3D Printing”. In: ACM Trans-

actions on Graphics 38 (Aug. 2019), pp. 1–14. issn: 0730-0301. doi: 10.1145/
3306346.3322992.

[144] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Milden-
hall, and Jonathan T. Barron. “NeRV: Neural Reflectance and Visibility Fields for
Relighting and View Synthesis”. In: CVPR. IEEE, June 2021, pp. 7495–7504. doi:
10.1109/cvpr46437.2021.00741. url: https://openaccess.thecvf.com/
content/CVPR2021/html/Srinivasan_NeRV_Neural_Reflectance_and_

Visibility_Fields_for_Relighting_and_View_CVPR_2021_paper.html.

[145] J. C. Butcher and H. Messel. “Electron Number Distribution in Electron-Photon
Showers”. In: Phys. Rev. 112 (6 Dec. 1958), pp. 2096–2106. issn: 0031-899X. doi:
10.1103/PhysRev.112.2096. url: https://link.aps.org/doi/10.1103/
PhysRev.112.2096.

[146] E. Woodcock, T. Murphy, P. Hemmings, and S. Longworth. “Techniques used
in the GEM code for Monte Carlo neutronics calculations in reactors and other
systems of complex geometry”. In: Proceedings of the Conference on Applications

of ComputingMethods to Reactor Problems. 2. Argonne National Laboratory, 1965,
p. 557.

[147] Markus Kettunen, Eugene D’Eon, Jacopo Pantaleoni, and Jan Novák. “An Unbi-
ased Ray-Marching Transmittance Estimator”. In: ACM Trans. Graph. 40.4 (July
2021), pp. 1–20. issn: 0730-0301. doi: 10.1145/3450626.3459937. url: https:
//doi.org/10.1145/3450626.3459937.

[148] Jan Novák, Andrew Selle, and Wojciech Jarosz. “Residual Ratio Tracking for Es-
timating Attenuation in Participating Media”. In: ACM Trans. Graph. 33.6 (Nov.
2014), pp. 1–11. issn: 0730-0301. doi: 10.1145/2661229.2661292. url: https:
//doi.org/10.1145/2661229.2661292.

202

https://doi.org/10.1145/3130800.3130890
https://doi.org/10.1145/3306346.3322992
https://doi.org/10.1145/3306346.3322992
https://doi.org/10.1109/cvpr46437.2021.00741
https://openaccess.thecvf.com/content/CVPR2021/html/Srinivasan_NeRV_Neural_Reflectance_and_Visibility_Fields_for_Relighting_and_View_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Srinivasan_NeRV_Neural_Reflectance_and_Visibility_Fields_for_Relighting_and_View_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Srinivasan_NeRV_Neural_Reflectance_and_Visibility_Fields_for_Relighting_and_View_CVPR_2021_paper.html
https://doi.org/10.1103/PhysRev.112.2096
https://link.aps.org/doi/10.1103/PhysRev.112.2096
https://link.aps.org/doi/10.1103/PhysRev.112.2096
https://doi.org/10.1145/3450626.3459937
https://doi.org/10.1145/3450626.3459937
https://doi.org/10.1145/3450626.3459937
https://doi.org/10.1145/2661229.2661292
https://doi.org/10.1145/2661229.2661292
https://doi.org/10.1145/2661229.2661292

References

[149] Jean-Marc Tregan, Stéphane Blanco, Jérémi Dauchet, Mouna El Hafi, Richard
Fournier, L. Ibarrart, P. Lapeyre, and Najda Villefranque. “Convergence issues in
derivatives of Monte Carlo null-collision integral formulations: a solution”. In:
Journal of Computational Physics 413 (July 2020), p. 109463. issn: 0021-9991. doi:
10.1016/j.jcp.2020.109463.

[150] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (Dec. 2014). url: http://arxiv.org/abs/
1412.6980.

[151] H. Rief. “Generalized Monte Carlo perturbation algorithms for correlated sam-
pling and a second-order Taylor series approach”. In: Annals of Nuclear Energy
11.9 (Jan. 1984), pp. 455–476. issn: 0306-4549. doi: https://doi.org/10.1016/
0306-4549(84)90064-1. url: https://www.sciencedirect.com/science/
article/pii/0306454984900641.

[152] Iliyan Georgiev, Zackary Misso, Toshiya Hachisuka, Derek Nowrouzezahrai, Jaroslav
Křivánek, and Wojciech Jarosz. “Integral Formulations of Volumetric Transmit-
tance”. In:ACMTrans. Graph. 38.6 (Nov. 2019), pp. 1–17. issn: 0730-0301. doi: 10.
1145/3355089.3356559. url: https://doi.org/10.1145/3355089.3356559.

[153] Min-Te Chao. “A general purpose unequal probability sampling plan”. In: Biometrika

69.3 (Dec. 1982), pp. 653–656. issn: 0006-3444. doi: 10.1093/biomet/69.3.653.
eprint: https://academic.oup.com/biomet/article- pdf/69/3/653/
591311/69-3-653.pdf. url: https://doi.org/10.1093/biomet/69.3.653.

[154] Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and
Wojciech Jarosz. “Spatiotemporal reservoir resampling for real-time ray tracing
with dynamic direct lighting”. In: ACM Transactions on Graphics (Proceedings of

SIGGRAPH) 39.4 (July 2020), p. 148. issn: 0730-0301. doi: 10/gg8xc7.

[155] Mark Lee, Brian Green, Feng Xie, and Eric Tabellion. “Vectorized production path
tracing”. In: Proceedings of High Performance Graphics. ACM. ACM, July 2017,
10:1–10:11. doi: 10.1145/3105762.3105768.

[156] Alexander Keller, Carsten Wächter, Matthias Raab, Daniel Seibert, Dietger van
Antwerpen, Johann Korndörfer, and Lutz Kettner. “The Iray Light Transport Sim-
ulation and Rendering System”. In: ACM SIGGRAPH 2017 Talks. SIGGRAPH ’17.
New York, NY, USA: ACM, July 2017, 34:1–34:2. isbn: 978-1-4503-5008-2. doi:
10.1145/3084363.3085050. url: http://arxiv.org/pdf/1705.01263.

203

https://doi.org/10.1016/j.jcp.2020.109463
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/https://doi.org/10.1016/0306-4549(84)90064-1
https://doi.org/https://doi.org/10.1016/0306-4549(84)90064-1
https://www.sciencedirect.com/science/article/pii/0306454984900641
https://www.sciencedirect.com/science/article/pii/0306454984900641
https://doi.org/10.1145/3355089.3356559
https://doi.org/10.1145/3355089.3356559
https://doi.org/10.1145/3355089.3356559
https://doi.org/10.1093/biomet/69.3.653
https://academic.oup.com/biomet/article-pdf/69/3/653/591311/69-3-653.pdf
https://academic.oup.com/biomet/article-pdf/69/3/653/591311/69-3-653.pdf
https://doi.org/10.1093/biomet/69.3.653
https://doi.org/10/gg8xc7
https://doi.org/10.1145/3105762.3105768
https://doi.org/10.1145/3084363.3085050
http://arxiv.org/pdf/1705.01263

References

[157] Brent Burley, David Adler, Matt Jen-Yuan Chiang, Hank Driskill, Ralf Habel,
Patrick Kelly, Peter Kutz, Yining Karl Li, and Daniel Teece. “The Design and
Evolution of Disney’s Hyperion Renderer”. In: ACM Transactions on Graphics

37.3 (July 2018), pp. 1–22. issn: 0730-0301. doi: 10.1145/3182159.

[158] Luca Fascione, Johannes Hanika, Marcos Fajardo, Per Christensen, Brent Burley,
and Brian Green. “Path Tracing in Production - Part 1: Production Renderers”.
In: ACM SIGGRAPH 2017 Courses. SIGGRAPH ’17. Los Angeles, California: ACM,
2017, 13:1–13:39. isbn: 978-1-4503-5014-3. doi: 10.1145/3084873.3084904.

[159] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library”. In: Advances in Neural Information Processing Systems 32. Ed. by H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett.
Curran Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-

learning-library.pdf.

[160] Scott Meyers. Effective C++: 55 specific ways to improve your programs and designs.
Pearson Education, 2005.

[161] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010.

[162] Robin J. Hogan. “Fast Reverse-Mode Automatic Differentiation Using Expression
Templates in C++”. In: ACM Transactions on Mathematical Software 40.4 (July
2014), pp. 1–16. issn: 0098-3500. doi: 10.1145/2560359.

[163] Todd Veldhuizen. “Expression Templates”. In: C++ Report 7 (1995).

[164] Bob Carpenter, Matthew D. Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and
Michael Betancourt. “The Stan Math Library: Reverse-Mode Automatic Differen-
tiation in C++”. In: CoRR abs/1509.07164 (2015). arXiv: 1509.07164. url: http:
//arxiv.org/abs/1509.07164.

[165] Eric Heitz and Eugene d’Eon. “Importance Sampling Microfacet-Based BSDFs
using the Distribution of Visible Normals”. In: Computer Graphics Forum. Vol. 33.
4. Wiley, July 2014, pp. 103–112. url: https://hal.inria.fr/hal-00996995/
file/article.pdf.

204

https://doi.org/10.1145/3182159
https://doi.org/10.1145/3084873.3084904
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/2560359
https://arxiv.org/abs/1509.07164
http://arxiv.org/abs/1509.07164
http://arxiv.org/abs/1509.07164
https://hal.inria.fr/hal-00996995/file/article.pdf
https://hal.inria.fr/hal-00996995/file/article.pdf

References

[166] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and Manfred Ernst.
“Embree: A Kernel Framework for Efficient CPU Ray Tracing”. In: ACM Transac-

tions on Graphics 33.4 (July 2014), 143:1–143:8. doi: 10.1145/2601097.2601199.

[167] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hobe-
rock, David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin
Robison, and Martin Stich. “OptiX: A General Purpose Ray Tracing Engine”. In:
ACM Trans. Graph. 29.4 (July 2010), pp. 1–13. issn: 0730-0301. doi: 10.1145/
1778765.1778803. url: https://doi.org/10.1145/1778765.1778803.

[168] Samuli Laine, Tero Karras, and Timo Aila. “Megakernels Considered Harmful:
Wavefront Path Tracing on GPUs”. In: Proceedings of the 5th High-Performance

Graphics Conference. Ed. by Kayvon Fatahalian, Christian Theobalt, and Jaakko
Lehtinen. HPG ’13. Anaheim, California: Association for Computing Machinery,
2013, 137–143. isbn: 9781450321358. doi: 10.1145/2492045.2492060.

[169] Jacob Mackay and David Johnson. “Millimetre wave ray tracing simulator with
phase and beam effects using the Wigner distribution function”. In: Passive and
Active Millimeter-Wave Imaging XXIV. Ed. by David A. Wikner and Duncan A.
Robertson. Vol. 11745. International Society for Optics and Photonics. SPIE, Apr.
2021, p. 1174508. doi: 10.1117/12.2585861. url: https://doi.org/10.1117/
12.2585861.

[170] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hov-
land. “ADIFOR–generating derivative codes from Fortran programs”. In: Scien-
tific Programming 1.1 (1992), pp. 11–29. issn: 1058-9244. url: http://downloads.
hindawi.com/journals/sp/1992/717832.pdf.

[171] Laurent Hascoet and Valérie Pascual. “The Tapenade automatic differentiation
tool: Principles, model, and specification”. In: ACM Transactions on Mathematical

Software (TOMS) 39.3 (2013), p. 20. doi: 10.1145/2450153.2450158.

[172] Marios Papas, Wojciech Jarosz, Wenzel Jakob, Szymon Rusinkiewicz, Wojciech
Matusik, and Tim Weyrich. “Goal-Based Caustics”. In: Computer Graphics Forum

(Proceedings of Eurographics) 30.2 (June 2011), pp. 503–511. issn: 0167-7055.

[173] Yonghao Yue, Kei Iwasaki, Bing-Yu Chen, Yoshinori Dobashi, and Tomoyuki Nishita.
“Poisson-Based Continuous Surface Generation for Goal-Based Caustics”. In:ACM
Transactions on Graphics 33.3 (June 2014), pp. 1–7. issn: 0730-0301. doi: 10.1145/
2580946.

205

https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/2492045.2492060
https://doi.org/10.1117/12.2585861
https://doi.org/10.1117/12.2585861
https://doi.org/10.1117/12.2585861
http://downloads.hindawi.com/journals/sp/1992/717832.pdf
http://downloads.hindawi.com/journals/sp/1992/717832.pdf
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1145/2580946
https://doi.org/10.1145/2580946

References

[174] Yuliy Schwartzburg, Romain Testuz, Andrea Tagliasacchi, and Mark Pauly. “High-
contrast Computational Caustic Design”. In: ACM Transactions on Graphics 33.4
(July 2014). Proc. SIGGRAPH 2014, pp. 1–11. issn: 0730-0301. doi: 10.1145/
2601097.2601200. url: http://lgg.epfl.ch/publications/2014/Caustics/
paper.pdf.

[175] Anurag Sharma, D Vizia Kumar, and Ajoy K Ghatak. “Tracing rays through
graded-index media: a new method”. In: Applied Optics 21.6 (Mar. 1982), p. 984.
issn: 0003-6935.

[176] Du T. Nguyen, Cameron Meyers, Timothy D. Yee, Nikola A. Dudukovic, Joel F.
Destino, Cheng Zhu, Eric B. Duoss, Theodore F. Baumann, Tayyab Suratwala,
James E. Smay, and Rebecca Dylla-Spears. “3D-Printed Transparent Glass”. In:
Advanced Materials 29.26 (July 2017), p. 1701181. issn: 0935-9648.

[177] Arjun Teh, Matthew O’Toole, and Ioannis Gkioulekas. “Adjoint Nonlinear Ray
Tracing”. In: ACM Trans. Graph. 41.4 (July 2022), pp. 1–13. issn: 0730-0301. doi:
10.1145/3528223.3530077. url: https://doi.org/10.1145/3528223.
3530077.

[178] Cheng Sun, Min Sun, and Hwann-Tzong Chen. “Direct Voxel Grid Optimization:
Super-fast Convergence for Radiance Fields Reconstruction”. In: arXiv:2111.11215
abs/2111.11215 (Nov. 2021). url: https://arxiv.org/abs/2111.11215.

[179] A. Laurentini. “The Visual Hull Concept for Silhouette-Based Image Understand-
ing”. In: IEEE Trans. Pattern Anal. Mach. Intell. 16.2 (Feb. 1994), 150–162. issn:
0162-8828. doi: 10.1109/34.273735. url: https://doi.org/10.1109/34.
273735.

[180] Hailin Jin, Stefano Soatto, and Anthony J. Yezzi. “Multi-view stereo reconstruc-
tion of dense shape and complex appearance”. In: International Journal of Com-

puter Vision 63.3 (July 2005), pp. 175–189. issn: 0920-5691. doi: 10.1007/s11263-
005-6876-7.

[181] Johannes Lutz Schönberger and Jan-Michael Frahm. “Structure-from-Motion Re-
visited”. In: Proc. of CVPR. IEEE. IEEE, June 2016, pp. 4104–4113. doi: 10.1109/
cvpr.2016.445.

[182] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. “Volume rendering of neu-
ral implicit surfaces”. In: Advances in Neural Information Processing Systems 34
(June 2021). Ed. by Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,
Percy Liang, and Jennifer Wortman Vaughan, pp. 4805–4815. url: https : / /

206

https://doi.org/10.1145/2601097.2601200
https://doi.org/10.1145/2601097.2601200
http://lgg.epfl.ch/publications/2014/Caustics/paper.pdf
http://lgg.epfl.ch/publications/2014/Caustics/paper.pdf
https://doi.org/10.1145/3528223.3530077
https://doi.org/10.1145/3528223.3530077
https://doi.org/10.1145/3528223.3530077
https://arxiv.org/abs/2111.11215
https://doi.org/10.1109/34.273735
https://doi.org/10.1109/34.273735
https://doi.org/10.1109/34.273735
https://doi.org/10.1007/s11263-005-6876-7
https://doi.org/10.1007/s11263-005-6876-7
https://doi.org/10.1109/cvpr.2016.445
https://doi.org/10.1109/cvpr.2016.445
https://proceedings.neurips.cc/paper/2021/hash/25e2a30f44898b9f3e978b1786dcd85c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/25e2a30f44898b9f3e978b1786dcd85c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/25e2a30f44898b9f3e978b1786dcd85c-Abstract.html

References

proceedings.neurips.cc/paper/2021/hash/25e2a30f44898b9f3e978b1786dcd85c-

Abstract.html.

[183] Delio Vicini, Wenzel Jakob, and Anton Kaplanyan. “A non-exponential trans-
mittance model for volumetric scene representations”. In: ACM Transactions on

Graphics (TOG) 40.4 (Aug. 2021), pp. 1–16. issn: 0730-0301. doi: 10.1145/3450626.
3459815. url: https://dl.acm.org/doi/pdf/10.1145/3450626.3459815.

[184] Linjie Lyu, Ayush Tewari, Thomas Leimkuehler, Marc Habermann, and Christian
Theobalt. “Neural Radiance Transfer Fields for Relightable Novel-view Synthe-
sis with Global Illumination”. In: arXiv preprint arXiv:2207.13607 abs/2207.13607
(2022). doi: 10.48550/arxiv.2207.13607. url: https://doi.org/10.48550/
arXiv.2207.13607.

[185] Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul Srinivasan, and
Jonathan T. Barron. “NeRF in the Dark: High Dynamic Range View Synthesis
from Noisy Raw Images”. In: arXiv:2111.13679 abs/2111.13679 (Nov. 2021). url:
https://arxiv.org/abs/2111.13679.

[186] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and An-
drew Fitzgibbon. “KinectFusion: Real-time dense surface mapping and tracking”.
In: IEEE ISMAR. IEEE, Oct. 2011, pp. 127–136. doi: 10 . 1109 / ismar . 2011 .
6092378. url: http://www.doc.ic.ac.uk/%7Eajd/Publications/newcombe_
etal_ismar2011.pdf.

[187] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davi-
son, et al. “KinectFusion: real-time 3D reconstruction and interaction using a
moving depth camera”. In: Proc. of ACM UIST. Ed. by Jeffrey S. Pierce, Maneesh
Agrawala, and Scott R. Klemmer. ACM, 2011, pp. 559–568. doi: 10.1145/2047196.
2047270.

[188] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger. “Real-
time 3D reconstruction at scale using voxel hashing”. In: ACM Trans. Graph. 32.6
(Nov. 2013), pp. 1–11. issn: 0730-0301. doi: 10.1145/2508363.2508374. url:
http://graphics.stanford.edu/%7Eniessner/papers/2013/4hashing/

niessner2013hashing.pdf.

207

https://proceedings.neurips.cc/paper/2021/hash/25e2a30f44898b9f3e978b1786dcd85c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/25e2a30f44898b9f3e978b1786dcd85c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/25e2a30f44898b9f3e978b1786dcd85c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/25e2a30f44898b9f3e978b1786dcd85c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/25e2a30f44898b9f3e978b1786dcd85c-Abstract.html
https://doi.org/10.1145/3450626.3459815
https://doi.org/10.1145/3450626.3459815
https://dl.acm.org/doi/pdf/10.1145/3450626.3459815
https://doi.org/10.48550/arxiv.2207.13607
https://doi.org/10.48550/arXiv.2207.13607
https://doi.org/10.48550/arXiv.2207.13607
https://arxiv.org/abs/2111.13679
https://doi.org/10.1109/ismar.2011.6092378
https://doi.org/10.1109/ismar.2011.6092378
http://www.doc.ic.ac.uk/%7Eajd/Publications/newcombe_etal_ismar2011.pdf
http://www.doc.ic.ac.uk/%7Eajd/Publications/newcombe_etal_ismar2011.pdf
https://doi.org/10.1145/2047196.2047270
https://doi.org/10.1145/2047196.2047270
https://doi.org/10.1145/2508363.2508374
http://graphics.stanford.edu/%7Eniessner/papers/2013/4hashing/niessner2013hashing.pdf
http://graphics.stanford.edu/%7Eniessner/papers/2013/4hashing/niessner2013hashing.pdf

References

[189] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Christian
Theobalt. “Bundlefusion: Real-time globally consistent 3d reconstruction using
on-the-fly surface reintegration”. In: ACM Trans. Graph. 36.4 (2017), p. 1. doi:
10.1145/3054739.

[190] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon
Green, Jakob J. Engel, Raul Mur-Artal, Carl Ren, Shobhit Verma, Anton Clark-
son, Mingfei Yan, Brian Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou,
Kimberly Leon, Nigel Carter, Jesus Briales, Tyler Gillingham, Elias Mueggler,
Luis Pesqueira, Manolis Savva, Dhruv Batra, Hauke M. Strasdat, Renzo De Nardi,
Michael Goesele, Steven Lovegrove, and Richard Newcombe. “The Replica Dataset:
A Digital Replica of Indoor Spaces”. In: arXiv preprint arXiv:1906.05797 abs/1906.05797
(June 2019). url: http://arxiv.org/abs/1906.05797.

[191] Paul Debevec. “Rendering synthetic objects into real scenes: Bridging traditional
and image-based graphics with global illumination and high dynamic range pho-
tography”. In: SIGGRAPH. 1998, pp. 189–198. doi: 10.1145/1401132.1401175.

[192] Robert Maier, Kihwan Kim, Daniel Cremers, Jan Kautz, and Matthias Nießner.
“Intrinsic3d: High-quality 3D reconstruction by joint appearance and geometry
optimization with spatially-varying lighting”. In: Proc. of CVPR. IEEE. IEEE, Oct.
2017, pp. 3114–3122. doi: 10.1109/iccv.2017.338. url: http://arxiv.org/
pdf/1708.01670.

[193] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, and
Manmohan Chandraker. “Inverse Rendering for Complex Indoor Scenes: Shape,
Spatially-Varying Lighting and SVBRDF from a Single Image”. In: Proc. of CVPR.
IEEE. IEEE, June 2020, pp. 2472–2481. doi: 10.1109/cvpr42600.2020.00255.
url: https://openaccess.thecvf.com/content_CVPR_2020/html/Li_
Inverse _ Rendering _ for _ Complex _ Indoor _ Scenes _ Shape _ Spatially -

Varying_Lighting_and_CVPR_2020_paper.html.

[194] Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emiliano
Gambaretto, Christian Gagné, and Jean-François Lalonde. “Learning to predict
indoor illumination from a single image”. In: ACM Trans. Graph. 36.6 (Nov. 2017),
pp. 1–14. issn: 0730-0301. doi: 10 . 1145 / 3130800 . 3130891. url: http : / /
arxiv.org/pdf/1704.00090.

[195] Mathieu Garon, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr, and Jean-François
Lalonde. “Fast Spatially-Varying Indoor Lighting Estimation”. In: Proc. of CVPR.

208

https://doi.org/10.1145/3054739
http://arxiv.org/abs/1906.05797
https://doi.org/10.1145/1401132.1401175
https://doi.org/10.1109/iccv.2017.338
http://arxiv.org/pdf/1708.01670
http://arxiv.org/pdf/1708.01670
https://doi.org/10.1109/cvpr42600.2020.00255
https://openaccess.thecvf.com/content_CVPR_2020/html/Li_Inverse_Rendering_for_Complex_Indoor_Scenes_Shape_Spatially-Varying_Lighting_and_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Li_Inverse_Rendering_for_Complex_Indoor_Scenes_Shape_Spatially-Varying_Lighting_and_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Li_Inverse_Rendering_for_Complex_Indoor_Scenes_Shape_Spatially-Varying_Lighting_and_CVPR_2020_paper.html
https://doi.org/10.1145/3130800.3130891
http://arxiv.org/pdf/1704.00090
http://arxiv.org/pdf/1704.00090

References

IEEE. IEEE, June 2019, pp. 6908–6917. doi: 10.1109/cvpr.2019.00707. url:
http://openaccess.thecvf.com/content_CVPR_2019/html/Garon_Fast_

Spatially- Varying_Indoor_Lighting_Estimation_CVPR_2019_paper.

html.

[196] Marc-André Gardner, Yannick Hold-Geoffroy, Kalyan Sunkavalli, Christian Gagné,
and Jean-François Lalonde. “Deep Parametric Indoor Lighting Estimation”. In:
Proc. of ICCV. IEEE. IEEE, Oct. 2019, pp. 7175–7183. doi: 10.1109/iccv.2019.
00727. url: http://arxiv.org/pdf/1910.08812.

[197] Lixiong Chen, Yinqiang Zheng, Boxin Shi, Art Subpa-asa, and Imari Sato. “A
Microfacet-based Model for Photometric Stereo with General Isotropic Reflectance”.
In: IEEE Trans. Pattern Anal. Mach. Intell. 43 (Jan. 2019), pp. 48–61. issn: 0162-
8828. doi: 10.1109/tpami.2019.2927909.

[198] Kaizhang Kang, Zimin Chen, Jiaping Wang, Kun Zhou, and Hongzhi Wu. “Effi-
cient reflectance capture using an autoencoder.” In:ACMTrans. Graph. 37.4 (Aug.
2018), 127:1–127:10. issn: 0730-0301. doi: 10.1145/3197517.3201279.

[199] Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser Sheikh. “Deep appear-
ance models for face rendering”. In: ACM Trans. Graph. 37.4 (Aug. 2018), p. 68.
issn: 0730-0301. doi: 10.1145/3197517.3201401. url: https://dl.acm.org/
doi/pdf/10.1145/3197517.3201401.

[200] Zexiang Xu, Kalyan Sunkavalli, Sunil Hadap, and Ravi Ramamoorthi. “Deep image-
based relighting from optimal sparse samples”. In: ACM Trans. Graph. 37.4 (Aug.
2018), p. 126. issn: 0730-0301. doi: 10.1145/3197517.3201313. url: https:
//dl.acm.org/doi/pdf/10.1145/3197517.3201313.

[201] Maxim Maximov, Laura Leal-Taixe, Mario Fritz, and Tobias Ritschel. “Deep Ap-
pearance Maps”. In: Proc. ICCV. IEEE, Oct. 2019, pp. 8728–8737. doi: 10.1109/
iccv.2019.00882.

[202] Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. “Deep inverse
rendering for high-resolution svbrdf estimation from an arbitrary number of im-
ages”. In: ACM Transactions on Graphics (TOG) 38.4 (Aug. 2019), pp. 1–15. issn:
0730-0301. doi: 10.1145/3306346.3323042. url: https://dl.acm.org/doi/
pdf/10.1145/3306346.3323042.

[203] Yue Dong. “Deep appearance modeling: A survey”. In: Visual Informatics 3 (June
2019), pp. 59–68. issn: 2468-502X. doi: 10.1016/j.visinf.2019.07.003. url:
https://doi.org/10.1016/j.visinf.2019.07.003.

209

https://doi.org/10.1109/cvpr.2019.00707
http://openaccess.thecvf.com/content_CVPR_2019/html/Garon_Fast_Spatially-Varying_Indoor_Lighting_Estimation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Garon_Fast_Spatially-Varying_Indoor_Lighting_Estimation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Garon_Fast_Spatially-Varying_Indoor_Lighting_Estimation_CVPR_2019_paper.html
https://doi.org/10.1109/iccv.2019.00727
https://doi.org/10.1109/iccv.2019.00727
http://arxiv.org/pdf/1910.08812
https://doi.org/10.1109/tpami.2019.2927909
https://doi.org/10.1145/3197517.3201279
https://doi.org/10.1145/3197517.3201401
https://dl.acm.org/doi/pdf/10.1145/3197517.3201401
https://dl.acm.org/doi/pdf/10.1145/3197517.3201401
https://doi.org/10.1145/3197517.3201313
https://dl.acm.org/doi/pdf/10.1145/3197517.3201313
https://dl.acm.org/doi/pdf/10.1145/3197517.3201313
https://doi.org/10.1109/iccv.2019.00882
https://doi.org/10.1109/iccv.2019.00882
https://doi.org/10.1145/3306346.3323042
https://dl.acm.org/doi/pdf/10.1145/3306346.3323042
https://dl.acm.org/doi/pdf/10.1145/3306346.3323042
https://doi.org/10.1016/j.visinf.2019.07.003
https://doi.org/10.1016/j.visinf.2019.07.003

References

[204] Carolin Schmitt, Simon Donné, Gernot Riegler, Vladlen Koltun, and Andreas
Geiger. “On Joint Estimation of Pose, Geometry and svBRDF From a Handheld
Scanner”. In: Proc. of CVPR. IEEE. IEEE, June 2020, pp. 3493–3503. doi: 10.1109/
cvpr42600.2020.00355. url: https://openaccess.thecvf.com/content_
CVPR_2020/html/Schmitt_On_Joint_Estimation_of_Pose_Geometry_and_

svBRDF_From_a_CVPR_2020_paper.html.

[205] Shen Sang and Manmohan Chandraker. “Single-Shot Neural Relighting and SVBRDF
Estimation”. In: ECCV. Ed. by Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm. Vol. 12364. Springer. Springer International Publishing, 2020,
pp. 85–101. isbn: 9783030585280. doi: 10.1007/978-3-030-58529-7_6.

[206] Mark Boss, Varun Jampani, Kihwan Kim, Hendrik Lensch, and Jan Kautz. “Two-
shot spatially-varying brdf and shape estimation”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. IEEE, June 2020, pp. 3982–
3991. doi: 10.1109/cvpr42600.2020.00404. url: https://openaccess.
thecvf . com / content _ CVPR _ 2020 / html / Boss _ Two - Shot _ Spatially -

Varying_BRDF_and_Shape_Estimation_CVPR_2020_paper.html.

[207] Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan
Chandraker. “Learning to reconstruct shape and spatially-varying reflectance
from a single image”. In: ACM Trans. Graph. 37.6 (Dec. 2018), pp. 1–11. issn:
0730-0301. doi: 10.1145/3272127.3275055.

[208] Jonathan T Barron and Jitendra Malik. “Shape, illumination, and reflectance from
shading”. In: IEEE Trans. Pattern Anal. Mach. Intell. 37.8 (May 2014), pp. 1670–
1687. issn: 0162-8828. doi: 10.1109/tpami.2014.2377712. url: https://
arxiv.org/abs/2010.03592.

[209] Kevin Karsch, Varsha Hedau, David Forsyth, and Derek Hoiem. “Rendering syn-
thetic objects into legacy photographs”. In: ACM Trans. Graph. 30.6 (Dec. 2011),
pp. 1–12. doi: 10.1145/2024156.2024191. url: http://arxiv.org/abs/
1912.11565.

[210] Kevin Karsch, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr, Hailin Jin, Rafael
Fonte, Michael Sittig, and David Forsyth. “Automatic scene inference for 3d ob-
ject compositing”. In: ACM Trans. Graph. 33.3 (May 2014), pp. 1–15. issn: 0730-
0301. doi: 10.1145/2602146. url: http://arxiv.org/pdf/1912.12297.

[211] Harry Barrow, J Tenenbaum, A Hanson, and E Riseman. “Recovering intrinsic
scene characteristics”. In: Comput. Vis. Syst 2 (1978), pp. 3–26.

210

https://doi.org/10.1109/cvpr42600.2020.00355
https://doi.org/10.1109/cvpr42600.2020.00355
https://openaccess.thecvf.com/content_CVPR_2020/html/Schmitt_On_Joint_Estimation_of_Pose_Geometry_and_svBRDF_From_a_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Schmitt_On_Joint_Estimation_of_Pose_Geometry_and_svBRDF_From_a_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Schmitt_On_Joint_Estimation_of_Pose_Geometry_and_svBRDF_From_a_CVPR_2020_paper.html
https://doi.org/10.1007/978-3-030-58529-7_6
https://doi.org/10.1109/cvpr42600.2020.00404
https://openaccess.thecvf.com/content_CVPR_2020/html/Boss_Two-Shot_Spatially-Varying_BRDF_and_Shape_Estimation_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Boss_Two-Shot_Spatially-Varying_BRDF_and_Shape_Estimation_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Boss_Two-Shot_Spatially-Varying_BRDF_and_Shape_Estimation_CVPR_2020_paper.html
https://doi.org/10.1145/3272127.3275055
https://doi.org/10.1109/tpami.2014.2377712
https://arxiv.org/abs/2010.03592
https://arxiv.org/abs/2010.03592
https://doi.org/10.1145/2024156.2024191
http://arxiv.org/abs/1912.11565
http://arxiv.org/abs/1912.11565
https://doi.org/10.1145/2602146
http://arxiv.org/pdf/1912.12297

References

[212] Abhimitra Meka, Maxim Maximov, Michael Zollhoefer, Avishek Chatterjee, Hans-
Peter Seidel, Christian Richardt, and Christian Theobalt. “LIME: Live Intrinsic
Material Estimation”. In: Proc. of CVPR. IEEE. IEEE, June 2018, pp. 6315–6324. doi:
10.1109/cvpr.2018.00661. url: http://openaccess.thecvf.com/content_
cvpr_2018/html/Meka_LIME_Live_Intrinsic_CVPR_2018_paper.html.

[213] Andrew Liu, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros, and Noah Snavely.
“Learning to Factorize and Relight a City”. In: ECCV. Ed. by Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm. Vol. 12349. Springer International
Publishing, Aug. 2020, pp. 544–561. isbn: 9783030585471. doi: 10.1007/978-3-
030-58548-8_32. url: http://arxiv.org/pdf/2008.02796.

[214] Justus Thies, Michael Zollhöfer, and Matthias Nießner. “Deferred neural render-
ing: Image synthesis using neural textures”. In: ACM Transactions on Graphics

(TOG) 38.4 (Apr. 2019), pp. 1–12. doi: 10.1145/3306346.3323035.

[215] Duan Gao, Guojun Chen, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. “De-
ferred neural lighting: free-viewpoint relighting from unstructured photographs”.
In: ACM Transactions on Graphics (TOG) 39.6 (2020), pp. 1–15. doi: 10.1145/
3414685.3417767.

[216] Darya Guarnera, Giuseppe Claudio Guarnera, Abhijeet Ghosh, Cornelia Denk,
and Mashhuda Glencross. “BRDF representation and acquisition”. In: Computer

Graphics Forum 35.2 (May 2016), pp. 625–650. issn: 0167-7055. url: http://
spiral.imperial.ac.uk/bitstream/10044/1/31052/2/star1009_CRC_

lowres.pdf.

[217] Brent Burley and Walt Disney Animation Studios. “Physically-based shading at
disney”. In: ACM SIGGRAPH. Vol. 2012. 2012, pp. 1–7.

[218] Dima Feldman and Yuval Shavitt. “An optimal median calculation algorithm for
estimating Internet link delays from active measurements”. In: 2007 Workshop

on End-to-End Monitoring Techniques and Services. Ed. by Kamil Saraç and Timur
Friedman. IEEE. IEEE, May 2007, pp. 1–7. doi: 10.1109/e2emon.2007.375318.

[219] Boris T Polyak and Anatoli B Juditsky. “Acceleration of stochastic approxima-
tion by averaging”. In: SIAM journal on control and optimization 30.4 (July 1992),
pp. 838–855. issn: 0363-0129. doi: 10.1137/0330046.

[220] David Ruppert. Efficient estimations from a slowly convergent Robbins-Monro pro-

cess. Tech. rep. Cornell University Operations Research and Industrial Engineer-
ing, 1988.

211

https://doi.org/10.1109/cvpr.2018.00661
http://openaccess.thecvf.com/content_cvpr_2018/html/Meka_LIME_Live_Intrinsic_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Meka_LIME_Live_Intrinsic_CVPR_2018_paper.html
https://doi.org/10.1007/978-3-030-58548-8_32
https://doi.org/10.1007/978-3-030-58548-8_32
http://arxiv.org/pdf/2008.02796
https://doi.org/10.1145/3306346.3323035
https://doi.org/10.1145/3414685.3417767
https://doi.org/10.1145/3414685.3417767
http://spiral.imperial.ac.uk/bitstream/10044/1/31052/2/star1009_CRC_lowres.pdf
http://spiral.imperial.ac.uk/bitstream/10044/1/31052/2/star1009_CRC_lowres.pdf
http://spiral.imperial.ac.uk/bitstream/10044/1/31052/2/star1009_CRC_lowres.pdf
https://doi.org/10.1109/e2emon.2007.375318
https://doi.org/10.1137/0330046

References

[221] Diego Royo, Jorge García, Adolfo Muñoz, and Adrian Jarabo. “Non-line-of-sight
transient rendering”. In: Computers & Graphics 107 (Oct. 2022). Ed. by Munkht-
setseg Nandigjav and Olga Diamante, pp. 84–92. issn: 0097-8493. doi: https://
doi.org/10.1016/j.cag.2022.07.003. url: https://www.sciencedirect.
com/science/article/pii/S0097849322001200.

[222] Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika Aittala, and Samuli
Laine. “Appearance-Driven Automatic 3D Model Simplification”. In: Eurograph-
ics Symposium on Rendering. Ed. by Adrien Bousseau and Morgan McGuire. Eu-
rographics Association, 2021, pp. 85–97. doi: 10.2312/sr.20211293.

[223] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen,
Alex Evans, Thomas Müller, and Sanja Fidler. “Extracting Triangular 3D Models,
Materials, and Lighting From Images”. In: arXiv:2111.12503 abs/2111.12503 (Nov.
2021). url: https://arxiv.org/abs/2111.12503.

[224] Mathieu Galtier, Stéphane Blanco, Cyril Caliot, Christophe Coustet, Jérémi Dauchet,
Mouna El Hafi, Vincent Eymet, Richard Fournier, Jacques Gautrais, Anaïs Khuong,
et al. “Integral formulation of null-collision Monte Carlo algorithms”. In: Journal
of Quantitative Spectroscopy and Radiative Transfer 125 (Aug. 2013), pp. 57–68.
issn: 0022-4073. doi: 10.1016/j.jqsrt.2013.04.001.

[225] Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. “Spectral and Decompo-
sition Tracking for Rendering Heterogeneous Volumes”. In: ACM Transactions

on Graphics (Proceedings of SIGGRAPH 2017) 36.4 (July 2017), 111:1–111:16. issn:
0730-0301. doi: 10.1145/3072959.3073665.

[226] Bailey Miller, Iliyan Georgiev, and Wojciech Jarosz. “A Null-Scattering Path In-
tegral Formulation of Light Transport”. In: ACM Trans. Graph. 38.4 (July 2019),
pp. 1–13. issn: 0730-0301. doi: 10.1145/3306346.3323025. url: https://doi.
org/10.1145/3306346.3323025.

212

https://doi.org/https://doi.org/10.1016/j.cag.2022.07.003
https://doi.org/https://doi.org/10.1016/j.cag.2022.07.003
https://www.sciencedirect.com/science/article/pii/S0097849322001200
https://www.sciencedirect.com/science/article/pii/S0097849322001200
https://doi.org/10.2312/sr.20211293
https://arxiv.org/abs/2111.12503
https://doi.org/10.1016/j.jqsrt.2013.04.001
https://doi.org/10.1145/3072959.3073665
https://doi.org/10.1145/3306346.3323025
https://doi.org/10.1145/3306346.3323025
https://doi.org/10.1145/3306346.3323025

	Table of Contents
	List of Figures
	List of Listings
	Introduction
	Overview
	List of publications

	Background
	Monte Carlo integration
	Example problem
	Estimator
	Importance sampling
	Bias and variance
	Russian roulette
	Multiple importance sampling
	Pseudo- and quasi-random numbers

	Physically based rendering
	Setting and scope
	Rendering equations for the surface case
	Participating media
	Rendering algorithms

	Automatic differentiation
	Adjoint methods
	Compilers and domain-specific languages
	Differentiable rendering
	Problem statement
	Neutron transport
	Differentiable rasterization
	Physically based differentiable rendering
	Differentiable rendering and machine learning
	Applications of differentiable rendering

	I Algorithms
	Differentiable rendering with automatic differentiation
	Algorithm
	Correctness
	Memory usage
	Selective usage of AD

	Radiative Backpropagation
	Introduction
	Radiative transfer
	Method
	Differential radiative transfer
	Optimization using differential transport
	Adjoint radiance
	Operator formulation
	Volumetric transport
	Sampling strategies for differential rendering
	Radiative backpropagation path tracing
	Worse is better? Acceleration using biased gradients.

	Evaluation
	Validation
	Performance
	Texture optimization
	Volume optimization

	Conclusion

	Unbiased Inverse Volume Rendering with Differential Trackers
	Introduction
	Background
	Volumetric path tracing
	Path replay backpropagation

	Issues with free-flight based gradient estimation
	Differentiating the radiative transfer equation
	Free-flight based gradient estimators

	Differential ratio tracking
	Unbiased estimators
	Sampling proportionally to transmittance
	Differential ratio tracking
	Multiple importance sampling
	Preserving linear time complexity

	Evaluation
	Correctness and variance
	Role of the optimizer
	Implementation and performance

	Conclusion

	II Systems
	Systems for physically based differentiable rendering
	Scale of rendering systems
	Differentiating through renderers

	Mitsuba 2
	Introduction
	Background
	Template metaprogramming
	Expression templates
	The Enoki library

	System design
	Architecture
	Language bindings
	Feature set
	Challenges

	Evaluation
	Conclusion

	From wavefront to megakernel
	Wavefront rendering in Mitsuba 2
	Megakernel translation
	Wavefronts and megakernels
	Transitioning to a megakernel

	Performance evaluation
	Conclusion

	III Applications
	Caustic optimization
	Surface displacements
	Gradient-index optics
	Conclusion

	Inverse volume rendering
	Combating local minima
	Source of local minima
	Emissive volume initialization
	Inverse volume rendering

	Conclusion

	Inverse Rendering of Real Rooms
	Introduction
	Related work
	Method
	Input data
	Inductive bias & modeling assumptions
	Texture-space sampling for variance reduction
	Optimization details

	Results
	Reconstruction of real captured scenes
	Implementation
	Applications

	Conclusion

	Conclusion
	Appendices
	Inverse Volume Rendering with the Null-Scattering Integral Formulation
	Inverse Rendering of Real Rooms — additional results
	Comparison to prior work
	Ablation study

	References

